Cargando…
New bandwidth selection criterion for Kernel PCA: Approach to dimensionality reduction and classification problems
BACKGROUND: DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease c...
Autores principales: | Thomas, Minta, Brabanter, Kris De, Moor, Bart De |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025604/ https://www.ncbi.nlm.nih.gov/pubmed/24886083 http://dx.doi.org/10.1186/1471-2105-15-137 |
Ejemplares similares
-
Predicting breast cancer using an expression values weighted clinical classifier
por: Thomas, Minta, et al.
Publicado: (2014) -
Predicting receptor-ligand pairs through kernel learning
por: Iacucci, Ernesto, et al.
Publicado: (2011) -
The projection score - an evaluation criterion for variable subset selection in PCA visualization
por: Fontes, Magnus, et al.
Publicado: (2011) -
Improving RLRN Image Splicing Detection with the Use of PCA and Kernel PCA
por: Moghaddasi, Zahra, et al.
Publicado: (2014) -
Improvement of variables interpretability in kernel PCA
por: Briscik, Mitja, et al.
Publicado: (2023)