Cargando…

Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean

BACKGROUND: The Indo-Pacific region has the largest number of seagrass species worldwide and this region is considered as the origin of the Hydrocharitaceae. Halophila ovalis and its closely-related species belonging to the Hydrocharitaceae are well-known as a complex taxonomic challenge mainly due...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Vy X, Detcharoen, Matsapume, Tuntiprapas, Piyalap, Soe-Htun, U, Sidik, Japar B, Harah, Muta Z, Prathep, Anchana, Papenbrock, Jutta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026155/
https://www.ncbi.nlm.nih.gov/pubmed/24886000
http://dx.doi.org/10.1186/1471-2148-14-92
_version_ 1782316816100491264
author Nguyen, Vy X
Detcharoen, Matsapume
Tuntiprapas, Piyalap
Soe-Htun, U
Sidik, Japar B
Harah, Muta Z
Prathep, Anchana
Papenbrock, Jutta
author_facet Nguyen, Vy X
Detcharoen, Matsapume
Tuntiprapas, Piyalap
Soe-Htun, U
Sidik, Japar B
Harah, Muta Z
Prathep, Anchana
Papenbrock, Jutta
author_sort Nguyen, Vy X
collection PubMed
description BACKGROUND: The Indo-Pacific region has the largest number of seagrass species worldwide and this region is considered as the origin of the Hydrocharitaceae. Halophila ovalis and its closely-related species belonging to the Hydrocharitaceae are well-known as a complex taxonomic challenge mainly due to their high morphological plasticity. The relationship of genetic differentiation and geographic barriers of H. ovalis radiation was not much studied in this region. Are there misidentifications between H. ovalis and its closely related species? Does any taxonomic uncertainty among different populations of H. ovalis persist? Is there any genetic differentiation among populations in the Western Pacific and the Eastern Indian Ocean, which are separated by the Thai-Malay peninsula? Genetic markers can be used to characterize and identify individuals or species and will be used to answer these questions. RESULTS: Phylogenetic analyses of the nuclear ribosomal internal transcribed spacer region based on materials collected from 17 populations in the Western Pacific and the Eastern Indian Ocean showed that some specimens identified as H. ovalis belonged to the H. major clade, also supported by morphological data. Evolutionary divergence between the two clades is between 0.033 and 0.038, much higher than the evolutionary divergence among H. ovalis populations. Eight haplotypes were found; none of the haplotypes from the Western Pacific is found in India and vice versa. Analysis of genetic diversity based on microsatellite analysis revealed that the genetic diversity in the Western Pacific is higher than in the Eastern Indian Ocean. The unrooted neighbor-joining tree among 14 populations from the Western Pacific and the Eastern Indian Ocean showed six groups. The Mantel test results revealed a significant correlation between genetic and geographic distances among populations. Results from band-based and allele frequency-based approaches from Amplified Fragment Length Polymorphism showed that all samples collected from both sides of the Thai-Malay peninsula were clustered into two clades: Gulf of Thailand and Andaman Sea. CONCLUSIONS: Our study documented the new records of H. major for Malaysia and Myanmar. The study also revealed that the Thai-Malay peninsula is a geographic barrier between H. ovalis populations in the Western Pacific and the Eastern Indian Ocean.
format Online
Article
Text
id pubmed-4026155
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40261552014-05-20 Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean Nguyen, Vy X Detcharoen, Matsapume Tuntiprapas, Piyalap Soe-Htun, U Sidik, Japar B Harah, Muta Z Prathep, Anchana Papenbrock, Jutta BMC Evol Biol Research Article BACKGROUND: The Indo-Pacific region has the largest number of seagrass species worldwide and this region is considered as the origin of the Hydrocharitaceae. Halophila ovalis and its closely-related species belonging to the Hydrocharitaceae are well-known as a complex taxonomic challenge mainly due to their high morphological plasticity. The relationship of genetic differentiation and geographic barriers of H. ovalis radiation was not much studied in this region. Are there misidentifications between H. ovalis and its closely related species? Does any taxonomic uncertainty among different populations of H. ovalis persist? Is there any genetic differentiation among populations in the Western Pacific and the Eastern Indian Ocean, which are separated by the Thai-Malay peninsula? Genetic markers can be used to characterize and identify individuals or species and will be used to answer these questions. RESULTS: Phylogenetic analyses of the nuclear ribosomal internal transcribed spacer region based on materials collected from 17 populations in the Western Pacific and the Eastern Indian Ocean showed that some specimens identified as H. ovalis belonged to the H. major clade, also supported by morphological data. Evolutionary divergence between the two clades is between 0.033 and 0.038, much higher than the evolutionary divergence among H. ovalis populations. Eight haplotypes were found; none of the haplotypes from the Western Pacific is found in India and vice versa. Analysis of genetic diversity based on microsatellite analysis revealed that the genetic diversity in the Western Pacific is higher than in the Eastern Indian Ocean. The unrooted neighbor-joining tree among 14 populations from the Western Pacific and the Eastern Indian Ocean showed six groups. The Mantel test results revealed a significant correlation between genetic and geographic distances among populations. Results from band-based and allele frequency-based approaches from Amplified Fragment Length Polymorphism showed that all samples collected from both sides of the Thai-Malay peninsula were clustered into two clades: Gulf of Thailand and Andaman Sea. CONCLUSIONS: Our study documented the new records of H. major for Malaysia and Myanmar. The study also revealed that the Thai-Malay peninsula is a geographic barrier between H. ovalis populations in the Western Pacific and the Eastern Indian Ocean. BioMed Central 2014-04-30 /pmc/articles/PMC4026155/ /pubmed/24886000 http://dx.doi.org/10.1186/1471-2148-14-92 Text en Copyright © 2014 Nguyen et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Nguyen, Vy X
Detcharoen, Matsapume
Tuntiprapas, Piyalap
Soe-Htun, U
Sidik, Japar B
Harah, Muta Z
Prathep, Anchana
Papenbrock, Jutta
Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean
title Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean
title_full Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean
title_fullStr Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean
title_full_unstemmed Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean
title_short Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean
title_sort genetic species identification and population structure of halophila (hydrocharitaceae) from the western pacific to the eastern indian ocean
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026155/
https://www.ncbi.nlm.nih.gov/pubmed/24886000
http://dx.doi.org/10.1186/1471-2148-14-92
work_keys_str_mv AT nguyenvyx geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean
AT detcharoenmatsapume geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean
AT tuntiprapaspiyalap geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean
AT soehtunu geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean
AT sidikjaparb geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean
AT harahmutaz geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean
AT prathepanchana geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean
AT papenbrockjutta geneticspeciesidentificationandpopulationstructureofhalophilahydrocharitaceaefromthewesternpacifictotheeasternindianocean