Cargando…
In silico study on Penicillin derivatives and Cephalosporins for upper respiratory tract bacterial pathogens
Upper respiratory tract infection (URTI) is an acute infection which involves the upper respiratory tract: nose, sinuses, tonsils and pharynx. URT infections are caused mainly by pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus. Conventionally, β-la...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026453/ https://www.ncbi.nlm.nih.gov/pubmed/28324428 http://dx.doi.org/10.1007/s13205-013-0147-z |
Sumario: | Upper respiratory tract infection (URTI) is an acute infection which involves the upper respiratory tract: nose, sinuses, tonsils and pharynx. URT infections are caused mainly by pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus. Conventionally, β-lactam antibiotics are used to treat URT infections. Penicillin binding proteins (PBPs) catalyze the cell wall synthesis in bacteria. β-Lactam antibiotics like Penicillin, Cephalosporins, Carbapenems and Monobactams inhibit bacterial cell wall synthesis by binding with PBPs. Pathogenic bacteria have efficiently evolved to resist these β-lactam antibiotics. New generation antibiotics are capable of inhibiting the action of PBP due to its new and peculiar structure. New generation antibiotics and Penicillin derivatives are selected in this study and virtually compared on the basis of interaction studies. 3-Dimensional (3D) interaction studies between Lactivicin, Cefuroxime, Cefadroxil, Ceftaroline, Ceftobiprole and Penicillin derivatives with PBPs of the above-mentioned bacteria are carried out. The aim of this study was to suggest a potent new generation molecule for further modification to increase the efficacy of the drug for the URTI. |
---|