Cargando…
Missing value imputation for microarray data: a comprehensive comparison study and a web tool
BACKGROUND: Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data...
Autores principales: | Chiu, Chia-Chun, Chan, Shih-Yao, Wang, Chung-Ching, Wu, Wei-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028811/ https://www.ncbi.nlm.nih.gov/pubmed/24565220 http://dx.doi.org/10.1186/1752-0509-7-S6-S12 |
Ejemplares similares
-
Shrinkage regression-based methods for microarray missing value imputation
por: Wang, Hsiuying, et al.
Publicado: (2013) -
MVIAeval: a web tool for comprehensively evaluating the performance of a new missing value imputation algorithm
por: Wu, Wei-Sheng, et al.
Publicado: (2017) -
Robust imputation method for missing values in microarray data
por: Yoon, Dankyu, et al.
Publicado: (2007) -
A hybrid imputation approach for microarray missing value estimation
por: Li, Huihui, et al.
Publicado: (2015) -
Missing value imputation improves clustering and interpretation of gene expression microarray data
por: Tuikkala, Johannes, et al.
Publicado: (2008)