Cargando…
Shrinkage regression-based methods for microarray missing value imputation
BACKGROUND: Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to...
Autores principales: | Wang, Hsiuying, Chiu, Chia-Chun, Wu, Yi-Ching, Wu, Wei-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028886/ https://www.ncbi.nlm.nih.gov/pubmed/24565159 http://dx.doi.org/10.1186/1752-0509-7-S6-S11 |
Ejemplares similares
-
Missing value imputation for microarray data: a comprehensive comparison study and a web tool
por: Chiu, Chia-Chun, et al.
Publicado: (2013) -
Robust imputation method for missing values in microarray data
por: Yoon, Dankyu, et al.
Publicado: (2007) -
Multiple Imputation of Missing Covariates in NONMEM and Evaluation of the Method’s Sensitivity to η-Shrinkage
por: Johansson, Åsa M., et al.
Publicado: (2013) -
An efficient ensemble method for missing value imputation in microarray gene expression data
por: Zhu, Xinshan, et al.
Publicado: (2021) -
A hybrid imputation approach for microarray missing value estimation
por: Li, Huihui, et al.
Publicado: (2015)