Cargando…
Basis for a neuronal version of Grover's quantum algorithm
Grover's quantum (search) algorithm exploits principles of quantum information theory and computation to surpass the strong Church–Turing limit governing classical computers. The algorithm initializes a search field into superposed N (eigen)states to later execute nonclassical “subroutines” inv...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029008/ https://www.ncbi.nlm.nih.gov/pubmed/24860419 http://dx.doi.org/10.3389/fnmol.2014.00029 |
_version_ | 1782317146423951360 |
---|---|
author | Clark, Kevin B. |
author_facet | Clark, Kevin B. |
author_sort | Clark, Kevin B. |
collection | PubMed |
description | Grover's quantum (search) algorithm exploits principles of quantum information theory and computation to surpass the strong Church–Turing limit governing classical computers. The algorithm initializes a search field into superposed N (eigen)states to later execute nonclassical “subroutines” involving unitary phase shifts of measured states and to produce root-rate or quadratic gain in the algorithmic time (O(N(1/2))) needed to find some “target” solution m. Akin to this fast technological search algorithm, single eukaryotic cells, such as differentiated neurons, perform natural quadratic speed-up in the search for appropriate store-operated Ca(2+) response regulation of, among other processes, protein and lipid biosynthesis, cell energetics, stress responses, cell fate and death, synaptic plasticity, and immunoprotection. Such speed-up in cellular decision making results from spatiotemporal dynamics of networked intracellular Ca(2+)-induced Ca(2+) release and the search (or signaling) velocity of Ca(2+) wave propagation. As chemical processes, such as the duration of Ca(2+) mobilization, become rate-limiting over interstore distances, Ca(2+) waves quadratically decrease interstore-travel time from slow saltatory to fast continuous gradients proportional to the square-root of the classical Ca(2+) diffusion coefficient, D(1/2), matching the computing efficiency of Grover's quantum algorithm. In this Hypothesis and Theory article, I elaborate on these traits using a fire-diffuse-fire model of store-operated cytosolic Ca(2+) signaling valid for glutamatergic neurons. Salient model features corresponding to Grover's quantum algorithm are parameterized to meet requirements for the Oracle Hadamard transform and Grover's iteration. A neuronal version of Grover's quantum algorithm figures to benefit signal coincidence detection and integration, bidirectional synaptic plasticity, and other vital cell functions by rapidly selecting, ordering, and/or counting optional response regulation choices. |
format | Online Article Text |
id | pubmed-4029008 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-40290082014-05-23 Basis for a neuronal version of Grover's quantum algorithm Clark, Kevin B. Front Mol Neurosci Neuroscience Grover's quantum (search) algorithm exploits principles of quantum information theory and computation to surpass the strong Church–Turing limit governing classical computers. The algorithm initializes a search field into superposed N (eigen)states to later execute nonclassical “subroutines” involving unitary phase shifts of measured states and to produce root-rate or quadratic gain in the algorithmic time (O(N(1/2))) needed to find some “target” solution m. Akin to this fast technological search algorithm, single eukaryotic cells, such as differentiated neurons, perform natural quadratic speed-up in the search for appropriate store-operated Ca(2+) response regulation of, among other processes, protein and lipid biosynthesis, cell energetics, stress responses, cell fate and death, synaptic plasticity, and immunoprotection. Such speed-up in cellular decision making results from spatiotemporal dynamics of networked intracellular Ca(2+)-induced Ca(2+) release and the search (or signaling) velocity of Ca(2+) wave propagation. As chemical processes, such as the duration of Ca(2+) mobilization, become rate-limiting over interstore distances, Ca(2+) waves quadratically decrease interstore-travel time from slow saltatory to fast continuous gradients proportional to the square-root of the classical Ca(2+) diffusion coefficient, D(1/2), matching the computing efficiency of Grover's quantum algorithm. In this Hypothesis and Theory article, I elaborate on these traits using a fire-diffuse-fire model of store-operated cytosolic Ca(2+) signaling valid for glutamatergic neurons. Salient model features corresponding to Grover's quantum algorithm are parameterized to meet requirements for the Oracle Hadamard transform and Grover's iteration. A neuronal version of Grover's quantum algorithm figures to benefit signal coincidence detection and integration, bidirectional synaptic plasticity, and other vital cell functions by rapidly selecting, ordering, and/or counting optional response regulation choices. Frontiers Media S.A. 2014-04-17 /pmc/articles/PMC4029008/ /pubmed/24860419 http://dx.doi.org/10.3389/fnmol.2014.00029 Text en Copyright © 2014 Clark. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Clark, Kevin B. Basis for a neuronal version of Grover's quantum algorithm |
title | Basis for a neuronal version of Grover's quantum algorithm |
title_full | Basis for a neuronal version of Grover's quantum algorithm |
title_fullStr | Basis for a neuronal version of Grover's quantum algorithm |
title_full_unstemmed | Basis for a neuronal version of Grover's quantum algorithm |
title_short | Basis for a neuronal version of Grover's quantum algorithm |
title_sort | basis for a neuronal version of grover's quantum algorithm |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029008/ https://www.ncbi.nlm.nih.gov/pubmed/24860419 http://dx.doi.org/10.3389/fnmol.2014.00029 |
work_keys_str_mv | AT clarkkevinb basisforaneuronalversionofgroversquantumalgorithm |