Cargando…
Active enhancer positions can be accurately predicted from chromatin marks and collective sequence motif data
BACKGROUND: Transcriptional regulation in multi-cellular organisms is a complex process involving multiple modular regulatory elements for each gene. Building whole-genome models of transcriptional networks requires mapping all relevant enhancers and then linking them to target genes. Previous metho...
Autores principales: | Podsiadło, Agnieszka, Wrzesień, Mariusz, Paja, Wiesław, Rudnicki, Witold, Wilczyński, Bartek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029456/ https://www.ncbi.nlm.nih.gov/pubmed/24565409 http://dx.doi.org/10.1186/1752-0509-7-S6-S16 |
Ejemplares similares
-
BNFinder2: Faster Bayesian network learning and Bayesian classification
por: Dojer, Norbert, et al.
Publicado: (2013) -
ChromNetMotif: a Python tool to extract chromatin-sate marked motifs in a chromatin interaction network
por: Soibam, Benjamin
Publicado: (2023) -
Identifying functions and prognostic biomarkers of network motifs marked by diverse chromatin states in human cell lines
por: Wang, Li, et al.
Publicado: (2019) -
Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data
por: Dabrowski, Michal, et al.
Publicado: (2015) -
Finding evolutionarily conserved cis-regulatory modules with a universal set of motifs
por: Wilczynski, Bartek, et al.
Publicado: (2009)