Cargando…
Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications
The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top do...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029638/ https://www.ncbi.nlm.nih.gov/pubmed/24681672 http://dx.doi.org/10.3390/s140406056 |
_version_ | 1782317246645796864 |
---|---|
author | Coluccio, Maria Laura Gentile, Francesco Francardi, Marco Perozziello, Gerardo Malara, Natalia Candeloro, Patrizio Di Fabrizio, Enzo |
author_facet | Coluccio, Maria Laura Gentile, Francesco Francardi, Marco Perozziello, Gerardo Malara, Natalia Candeloro, Patrizio Di Fabrizio, Enzo |
author_sort | Coluccio, Maria Laura |
collection | PubMed |
description | The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. |
format | Online Article Text |
id | pubmed-4029638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-40296382014-05-22 Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications Coluccio, Maria Laura Gentile, Francesco Francardi, Marco Perozziello, Gerardo Malara, Natalia Candeloro, Patrizio Di Fabrizio, Enzo Sensors (Basel) Article The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. MDPI 2014-03-27 /pmc/articles/PMC4029638/ /pubmed/24681672 http://dx.doi.org/10.3390/s140406056 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Coluccio, Maria Laura Gentile, Francesco Francardi, Marco Perozziello, Gerardo Malara, Natalia Candeloro, Patrizio Di Fabrizio, Enzo Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications |
title | Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications |
title_full | Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications |
title_fullStr | Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications |
title_full_unstemmed | Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications |
title_short | Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications |
title_sort | electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029638/ https://www.ncbi.nlm.nih.gov/pubmed/24681672 http://dx.doi.org/10.3390/s140406056 |
work_keys_str_mv | AT colucciomarialaura electrolessdepositionandnanolithographycancontroltheformationofmaterialsatthenanoscaleforplasmonicapplications AT gentilefrancesco electrolessdepositionandnanolithographycancontroltheformationofmaterialsatthenanoscaleforplasmonicapplications AT francardimarco electrolessdepositionandnanolithographycancontroltheformationofmaterialsatthenanoscaleforplasmonicapplications AT perozziellogerardo electrolessdepositionandnanolithographycancontroltheformationofmaterialsatthenanoscaleforplasmonicapplications AT malaranatalia electrolessdepositionandnanolithographycancontroltheformationofmaterialsatthenanoscaleforplasmonicapplications AT candeloropatrizio electrolessdepositionandnanolithographycancontroltheformationofmaterialsatthenanoscaleforplasmonicapplications AT difabrizioenzo electrolessdepositionandnanolithographycancontroltheformationofmaterialsatthenanoscaleforplasmonicapplications |