Cargando…

CPAC: Energy-Efficient Data Collection through Adaptive Selection of Compression Algorithms for Sensor Networks

We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression alg...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, HyungJune, Kim, HyunSeok, Chang, Ik Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029668/
https://www.ncbi.nlm.nih.gov/pubmed/24721763
http://dx.doi.org/10.3390/s140406419
Descripción
Sumario:We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol.