Cargando…

Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm

Land surface temperature (LST) is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS). This paper presents an adjustment of the split window algorithm (SWA) for TIRS that uses a...

Descripción completa

Detalles Bibliográficos
Autores principales: Rozenstein, Offer, Qin, Zhihao, Derimian, Yevgeny, Karnieli, Arnon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029672/
https://www.ncbi.nlm.nih.gov/pubmed/24670716
http://dx.doi.org/10.3390/s140405768
Descripción
Sumario:Land surface temperature (LST) is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS). This paper presents an adjustment of the split window algorithm (SWA) for TIRS that uses atmospheric transmittance and land surface emissivity (LSE) as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE) of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS.