Cargando…
An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors
BACKGROUND: Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noi...
Autores principales: | Foussier, Jerome, Teichmann, Daniel, Jia, Jing, Misgeld, Berno, Leonhardt, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029942/ https://www.ncbi.nlm.nih.gov/pubmed/24886253 http://dx.doi.org/10.1186/1472-6947-14-37 |
Ejemplares similares
-
Plasma proteomic changes in response to exercise training are associated with cardiorespiratory fitness adaptations
por: Robbins, Jeremy M., et al.
Publicado: (2023) -
Non-Invasive monitoring of diaphragmatic timing by means of surface contact sensors: An experimental study in dogs
por: Fiz, José Antonio, et al.
Publicado: (2004) -
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
por: Gao, Bingbing, et al.
Publicado: (2018) -
Multi-Sensor Calibration of Low-Cost Magnetic, Angular Rate and Gravity Systems
por: Lüken, Markus, et al.
Publicado: (2015) -
Fusion of High-Dynamic and Low-Drift Sensors Using Kalman Filters
por: Wu, Bin, et al.
Publicado: (2019)