Cargando…

Glycogen Synthase Kinase-3β Inhibition Ameliorates Cardiac Parasympathetic Dysfunction in Type 1 Diabetic Akita Mice

Decreased heart rate variability (HRV) is a major risk factor for sudden death and cardiovascular disease. We previously demonstrated that parasympathetic dysfunction in the heart of the Akita type 1 diabetic mouse was due to a decrease in the level of the sterol response element–binding protein (SR...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yali, Welzig, Charles M., Picard, Kristen L., Du, Chuang, Wang, Bo, Pan, Jen Q., Kyriakis, John M., Aronovitz, Mark J., Claycomb, William C., Blanton, Robert M., Park, Ho-Jin, Galper, Jonas B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030105/
https://www.ncbi.nlm.nih.gov/pubmed/24458356
http://dx.doi.org/10.2337/db12-1459
Descripción
Sumario:Decreased heart rate variability (HRV) is a major risk factor for sudden death and cardiovascular disease. We previously demonstrated that parasympathetic dysfunction in the heart of the Akita type 1 diabetic mouse was due to a decrease in the level of the sterol response element–binding protein (SREBP-1). Here we demonstrate that hyperactivity of glycogen synthase kinase-3β (GSK3β) in the atrium of the Akita mouse results in decreased SREBP-1, attenuation of parasympathetic modulation of heart rate, measured as a decrease in the high-frequency (HF) fraction of HRV in the presence of propranolol, and a decrease in expression of the G-protein coupled inward rectifying K(+) (GIRK4) subunit of the acetylcholine (ACh)-activated inward-rectifying K(+) channel (I(KACh)), the ion channel that mediates the heart rate response to parasympathetic stimulation. Treatment of atrial myocytes with the GSK3β inhibitor Kenpaullone increased levels of SREBP-1 and expression of GIRK4 and I(KACh), whereas a dominant-active GSK3β mutant decreased SREBP-1 and GIRK4 expression. In Akita mice treated with GSK3β inhibitors Li(+) and/or CHIR-99021, Li(+) increased I(KACh), and Li(+) and CHIR-99021 both partially reversed the decrease in HF fraction while increasing GIRK4 and SREBP-1 expression. These data support the conclusion that increased GSK3β activity in the type 1 diabetic heart plays a critical role in parasympathetic dysfunction through an effect on SREBP-1, supporting GSK3β as a new therapeutic target for diabetic autonomic neuropathy.