Cargando…
Untangling complex dynamical systems via derivative-variable correlations
Inferring the internal interaction patterns of a complex dynamical system is a challenging problem. Traditional methods often rely on examining the correlations among the dynamical units. However, in systems such as transcription networks, one unit's variable is also correlated with the rate of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030254/ https://www.ncbi.nlm.nih.gov/pubmed/24848769 http://dx.doi.org/10.1038/srep05030 |
Sumario: | Inferring the internal interaction patterns of a complex dynamical system is a challenging problem. Traditional methods often rely on examining the correlations among the dynamical units. However, in systems such as transcription networks, one unit's variable is also correlated with the rate of change of another unit's variable. Inspired by this, we introduce the concept of derivative-variable correlation, and use it to design a new method of reconstructing complex systems (networks) from dynamical time series. Using a tunable observable as a parameter, the reconstruction of any system with known interaction functions is formulated via a simple matrix equation. We suggest a procedure aimed at optimizing the reconstruction from the time series of length comparable to the characteristic dynamical time scale. Our method also provides a reliable precision estimate. We illustrate the method's implementation via elementary dynamical models, and demonstrate its robustness to both model error and observation error. |
---|