Cargando…

Evaluation of a solid matrix for collection and ambient storage of RNA from whole blood

BACKGROUND: Whole blood gene expression-based molecular diagnostic tests are becoming increasingly available. Conventional tube-based methods for obtaining RNA from whole blood can be limited by phlebotomy, volume requirements, and RNA stability during transport and storage. A dried blood spot matri...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Heng, Beineke, Philip, Li, Bing, Alberts, William, Rosenberg, Steven, Kvam, Erik, Wingrove, James A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030268/
https://www.ncbi.nlm.nih.gov/pubmed/24855452
http://dx.doi.org/10.1186/1472-6890-14-22
Descripción
Sumario:BACKGROUND: Whole blood gene expression-based molecular diagnostic tests are becoming increasingly available. Conventional tube-based methods for obtaining RNA from whole blood can be limited by phlebotomy, volume requirements, and RNA stability during transport and storage. A dried blood spot matrix for collecting high-quality RNA, called RNA Stabilizing Matrix (RSM), was evaluated against PAXgene® blood collection tubes. METHODS: Whole blood was collected from 25 individuals and subjected to 3 sample storage conditions: 18 hours at either room temperature (baseline arm) or 37°C, and 6 days at room temperature. RNA was extracted and assessed for integrity by Agilent Bioanalyzer, and gene expression was compared by RT-qPCR across 23 mRNAs comprising a clinical test for obstructive coronary artery disease. RESULTS: RSM produced RNA of relatively high integrity across the various tested conditions (mean RIN ± 95% CI: baseline arm, 6.92 ± 0.24; 37°C arm, 5.98 ± 0.48; 6-day arm, 6.72 ± 0.23). PAXgene samples showed comparable RNA integrity in both baseline and 37°C arms (8.42 ± 0.17; 7.92 ± 0.1 respectively) however significant degradation was observed in the 6-day arm (3.19 ± 1.32). Gene expression scores on RSM were highly correlated between the baseline and 37°C and 6-day study arms (median r = 0.96, 0.95 respectively), as was the correlation to PAXgene tubes (median r = 0.95, p < 0.001). CONCLUSION: RNA obtained from RSM shows little degradation and comparable RT-qPCR performance to PAXgene RNA for the 23 genes analyzed. Further development of this technology may provide a convenient method for collecting, shipping, and storing RNA for gene expression assays.