Cargando…

Uptake of Helicobacter pylori Vesicles Is Facilitated by Clathrin-Dependent and Clathrin-Independent Endocytic Pathways

Bacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells. Helicobacter pylori is a gastric pathogen that infects half of the world’s population, and in some individuals the infection progresses into p...

Descripción completa

Detalles Bibliográficos
Autores principales: Olofsson, Annelie, Nygård Skalman, Lars, Obi, Ikenna, Lundmark, Richard, Arnqvist, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030451/
https://www.ncbi.nlm.nih.gov/pubmed/24846379
http://dx.doi.org/10.1128/mBio.00979-14
Descripción
Sumario:Bacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells. Helicobacter pylori is a gastric pathogen that infects half of the world’s population, and in some individuals the infection progresses into peptic ulcer disease or gastric cancer. Here we report that intact vesicles from H. pylori are internalized by clathrin-dependent endocytosis and further dynamin-dependent processes, as well as in a cholesterol-sensitive manner. We analyzed the uptake of H. pylori vesicles by gastric epithelial cells using a method that we refer to as quantification of internalized substances (qIS). The qIS assay is based on a near-infrared dye with a cleavable linker that enables the specific quantification of internalized substances after exposure to reducing conditions. Both chemical inhibition and RNA interference in combination with the qIS assay showed that H. pylori vesicles enter gastric epithelial cells via both clathrin-mediated endocytosis and additional endocytic processes that are dependent on dynamin. Confocal microscopy revealed that H. pylori vesicles colocalized with clathrin and dynamin II and with markers of subsequent endosomal and lysosomal trafficking. Interestingly, however, knockdown of components required for caveolae had no significant effect on internalization and knockdown of components required for clathrin-independent carrier (CLIC) endocytosis increased internalization of H. pylori vesicles. Furthermore, uptake of vesicles by both clathrin-dependent and -independent pathways was sensitive to depletion, but not sequestering, of cholesterol in the host cell membrane suggesting that membrane fluidity influences the efficiency of H. pylori vesicle uptake.