Cargando…
Determination of Coefficients of High-Order Schemes for Riemann-Liouville Derivative
Although there have existed some numerical algorithms for the fractional differential equations, developing high-order methods (i.e., with convergence order greater than or equal to 2) is just the beginning. Lubich has ever proposed the high-order schemes when he studied the fractional linear multis...
Autores principales: | Wu, Rifang, Ding, Hengfei, Li, Changpin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030510/ https://www.ncbi.nlm.nih.gov/pubmed/24883394 http://dx.doi.org/10.1155/2014/402373 |
Ejemplares similares
-
Liouville-Riemann-Roch theorems on Abelian coverings
por: Kha, Minh, et al.
Publicado: (2021) -
Computational Methods for Parameter Identification in 2D Fractional System with Riemann–Liouville Derivative
por: Brociek, Rafał, et al.
Publicado: (2022) -
Stability of Delay Hopfield Neural Networks with Generalized Riemann–Liouville Type Fractional Derivative
por: Agarwal, Ravi P., et al.
Publicado: (2023) -
Data for numerical solution of Caputo's and Riemann–Liouville's fractional differential equations
por: Betancur-Herrera, David E., et al.
Publicado: (2020) -
Continuous Adaptive Finite-Time Sliding Mode Control for Fractional-Order Buck Converter Based on Riemann-Liouville Definition
por: Cai, Zhongze, et al.
Publicado: (2023)