Cargando…
Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders
The vector evaluated particle swarm optimisation (VEPSO) algorithm was previously improved by incorporating nondominated solutions for solving multiobjective optimisation problems. However, the obtained solutions did not converge close to the Pareto front and also did not distribute evenly over the...
Autores principales: | Lim, Kian Sheng, Buyamin, Salinda, Ahmad, Anita, Shapiai, Mohd Ibrahim, Naim, Faradila, Mubin, Marizan, Kim, Dong Hwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030577/ https://www.ncbi.nlm.nih.gov/pubmed/24883386 http://dx.doi.org/10.1155/2014/364179 |
Ejemplares similares
-
Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
por: Lim, Kian Sheng, et al.
Publicado: (2013) -
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization
por: Adam, Asrul, et al.
Publicado: (2014) -
A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
por: Ab Aziz, Nor Azlina, et al.
Publicado: (2014) -
Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal
por: Adam, Asrul, et al.
Publicado: (2016) -
Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals
por: Adam, Asrul, et al.
Publicado: (2016)