Cargando…
Exploring the Optimal Strategy to Predict Essential Genes in Microbes
Accurately predicting essential genes is important in many aspects of biology, medicine and bioengineering. In previous research, we have developed a machine learning based integrative algorithm to predict essential genes in bacterial species. This algorithm lends itself to two approaches for predic...
Autores principales: | Deng, Jingyuan, Tan, Lirong, Lin, Xiaodong, Lu, Yao, Lu, Long J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030871/ https://www.ncbi.nlm.nih.gov/pubmed/24970124 http://dx.doi.org/10.3390/biom2010001 |
Ejemplares similares
-
A Statistical Framework for Improving Genomic Annotations of Prokaryotic Essential Genes
por: Deng, Jingyuan, et al.
Publicado: (2013) -
Investigating the predictability of essential genes across distantly related organisms using an integrative approach
por: Deng, Jingyuan, et al.
Publicado: (2011) -
Investigating the predictability of essential genes across distantly related
organisms using an integrative approach
por: Deng, Jingyuan, et al.
Publicado: (2012) -
DeeplyEssential: a deep neural network for predicting essential genes in microbes
por: Hasan, Md Abid, et al.
Publicado: (2020) -
Large-scale identification of pathogen essential genes during coinfection with sympatric and allopatric microbes
por: Lewin, Gina R., et al.
Publicado: (2019)