Cargando…
Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer
For the purpose of developing a novel ablation therapy for oral cancer, the heat generation and transfer properties of a Ti-coated carbon steel rod with 20-mm length and 1.8-mm outer diameter were investigated by means of a high-frequency induction technique at 300 kHz. The heat generation measureme...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030913/ https://www.ncbi.nlm.nih.gov/pubmed/24955829 http://dx.doi.org/10.3390/jfb4010027 |
_version_ | 1782317441867579392 |
---|---|
author | Naohara, Takashi Aono, Hiromichi Maehara, Tsunehiro Hirazawa, Hideyuki Matsutomo, Shinya Watanabe, Yuji |
author_facet | Naohara, Takashi Aono, Hiromichi Maehara, Tsunehiro Hirazawa, Hideyuki Matsutomo, Shinya Watanabe, Yuji |
author_sort | Naohara, Takashi |
collection | PubMed |
description | For the purpose of developing a novel ablation therapy for oral cancer, the heat generation and transfer properties of a Ti-coated carbon steel rod with 20-mm length and 1.8-mm outer diameter were investigated by means of a high-frequency induction technique at 300 kHz. The heat generation measurement performed using water (15 mL) revealed that the difference of the inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction only slightly affects the heating behavior, exhibiting the overlapped temperature curves during an induction time of 1200 s. These results suggest that the effect of the shape magnetic anisotropy is almost eliminated, being convenient for the precise control of the ablation temperature in clinical use. In the experiments utilizing a tissue-mimicking phantom, the heat transfer concentrically occurred in the lateral direction for both the planar surface and a 10-mm deep cross-section. However, the former exhibited a considerably lower increase in temperature (ΔT), probably due to the effect of heat dissipation to the ambient air. No significant heat transfer was found to occur to the lower side of the inserted Ti-coated carbon steel rod, which is situated in the longitudinal direction. |
format | Online Article Text |
id | pubmed-4030913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-40309132014-06-12 Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer Naohara, Takashi Aono, Hiromichi Maehara, Tsunehiro Hirazawa, Hideyuki Matsutomo, Shinya Watanabe, Yuji J Funct Biomater Communication For the purpose of developing a novel ablation therapy for oral cancer, the heat generation and transfer properties of a Ti-coated carbon steel rod with 20-mm length and 1.8-mm outer diameter were investigated by means of a high-frequency induction technique at 300 kHz. The heat generation measurement performed using water (15 mL) revealed that the difference of the inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction only slightly affects the heating behavior, exhibiting the overlapped temperature curves during an induction time of 1200 s. These results suggest that the effect of the shape magnetic anisotropy is almost eliminated, being convenient for the precise control of the ablation temperature in clinical use. In the experiments utilizing a tissue-mimicking phantom, the heat transfer concentrically occurred in the lateral direction for both the planar surface and a 10-mm deep cross-section. However, the former exhibited a considerably lower increase in temperature (ΔT), probably due to the effect of heat dissipation to the ambient air. No significant heat transfer was found to occur to the lower side of the inserted Ti-coated carbon steel rod, which is situated in the longitudinal direction. MDPI 2013-02-18 /pmc/articles/PMC4030913/ /pubmed/24955829 http://dx.doi.org/10.3390/jfb4010027 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Communication Naohara, Takashi Aono, Hiromichi Maehara, Tsunehiro Hirazawa, Hideyuki Matsutomo, Shinya Watanabe, Yuji Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer |
title | Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer |
title_full | Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer |
title_fullStr | Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer |
title_full_unstemmed | Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer |
title_short | Heat Generation and Transfer Behaviors of Ti-Coated Carbon Steel Rod Adaptable for Ablation Therapy of Oral Cancer |
title_sort | heat generation and transfer behaviors of ti-coated carbon steel rod adaptable for ablation therapy of oral cancer |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030913/ https://www.ncbi.nlm.nih.gov/pubmed/24955829 http://dx.doi.org/10.3390/jfb4010027 |
work_keys_str_mv | AT naoharatakashi heatgenerationandtransferbehaviorsofticoatedcarbonsteelrodadaptableforablationtherapyoforalcancer AT aonohiromichi heatgenerationandtransferbehaviorsofticoatedcarbonsteelrodadaptableforablationtherapyoforalcancer AT maeharatsunehiro heatgenerationandtransferbehaviorsofticoatedcarbonsteelrodadaptableforablationtherapyoforalcancer AT hirazawahideyuki heatgenerationandtransferbehaviorsofticoatedcarbonsteelrodadaptableforablationtherapyoforalcancer AT matsutomoshinya heatgenerationandtransferbehaviorsofticoatedcarbonsteelrodadaptableforablationtherapyoforalcancer AT watanabeyuji heatgenerationandtransferbehaviorsofticoatedcarbonsteelrodadaptableforablationtherapyoforalcancer |