Cargando…
Biocompatibility of Bacterial Cellulose Based Biomaterials
Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030925/ https://www.ncbi.nlm.nih.gov/pubmed/24955750 http://dx.doi.org/10.3390/jfb3040864 |
_version_ | 1782317444398841856 |
---|---|
author | Torres, Fernando G. Commeaux, Solene Troncoso, Omar P. |
author_facet | Torres, Fernando G. Commeaux, Solene Troncoso, Omar P. |
author_sort | Torres, Fernando G. |
collection | PubMed |
description | Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed. |
format | Online Article Text |
id | pubmed-4030925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-40309252014-06-12 Biocompatibility of Bacterial Cellulose Based Biomaterials Torres, Fernando G. Commeaux, Solene Troncoso, Omar P. J Funct Biomater Review Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed. MDPI 2012-12-05 /pmc/articles/PMC4030925/ /pubmed/24955750 http://dx.doi.org/10.3390/jfb3040864 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Torres, Fernando G. Commeaux, Solene Troncoso, Omar P. Biocompatibility of Bacterial Cellulose Based Biomaterials |
title | Biocompatibility of Bacterial Cellulose Based Biomaterials |
title_full | Biocompatibility of Bacterial Cellulose Based Biomaterials |
title_fullStr | Biocompatibility of Bacterial Cellulose Based Biomaterials |
title_full_unstemmed | Biocompatibility of Bacterial Cellulose Based Biomaterials |
title_short | Biocompatibility of Bacterial Cellulose Based Biomaterials |
title_sort | biocompatibility of bacterial cellulose based biomaterials |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030925/ https://www.ncbi.nlm.nih.gov/pubmed/24955750 http://dx.doi.org/10.3390/jfb3040864 |
work_keys_str_mv | AT torresfernandog biocompatibilityofbacterialcellulosebasedbiomaterials AT commeauxsolene biocompatibilityofbacterialcellulosebasedbiomaterials AT troncosoomarp biocompatibilityofbacterialcellulosebasedbiomaterials |