Cargando…

Biomimetic Strategies for Bone Repair and Regeneration

The osseointegration rate of implants is related to their composition and surface roughness. Implant roughness favors both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate (Ca-P) coatings promote bone healing and apposition, leading to the rapid biological fixation of im...

Descripción completa

Detalles Bibliográficos
Autores principales: Raucci, Maria G., Guarino, Vincenzo, Ambrosio, Luigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030995/
https://www.ncbi.nlm.nih.gov/pubmed/24955638
http://dx.doi.org/10.3390/jfb3030688
Descripción
Sumario:The osseointegration rate of implants is related to their composition and surface roughness. Implant roughness favors both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate (Ca-P) coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. This review discusses two main routes for the manufacturing of polymer-based osteoconductive scaffolds for tissue engineering, namely the incorporation of bioceramic particles in the scaffold and the coating of a scaffold with a thin layer of apatite through a biomimetic process.