Cargando…

Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment

Our study seeks to explore anabolic effects of a periodontal regenerative agent enamel matrix derivative (EMD). Its modulation by nicotine and the anti-oxidant glutathione (GSH) are investigated in human periosteal fibroblasts (HPF) and MG63 osteoblasts. Androgen biomarkers of oxidative stress and h...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Qattan, Tareq, Soory, Mena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031020/
https://www.ncbi.nlm.nih.gov/pubmed/24956521
http://dx.doi.org/10.3390/jfb3010143
_version_ 1782317465200492544
author Al-Qattan, Tareq
Soory, Mena
author_facet Al-Qattan, Tareq
Soory, Mena
author_sort Al-Qattan, Tareq
collection PubMed
description Our study seeks to explore anabolic effects of a periodontal regenerative agent enamel matrix derivative (EMD). Its modulation by nicotine and the anti-oxidant glutathione (GSH) are investigated in human periosteal fibroblasts (HPF) and MG63 osteoblasts. Androgen biomarkers of oxidative stress and healing, resulting from radiolabeled androgen substrates are assayed. This in vitro model simulates a redox environment relevant to the periodontal lesion. It aims to confirm the hypothesis that EMD is an effective regenerative agent in a typically redox environment of the periodontal lesion. Monolayer cultures of MG63 osteoblasts and HPF established in culture medium are incubated with androgen substrates, and optimal concentrations of EMD, nicotine and GSH, alone and in combination. EMD significantly enhances yields of 5α-dihydrotestosterone (DHT) an effective bioactive metabolite, alone and in combination with GSH, to overcome oxidative effects of nicotine across cultures. The ‘in vitro’ findings of this study could be extrapolated to “in vivo” applications of EMD as an adjunctive regenerative therapeutic agent in an environment of chronic inflammation and oxidative stress. Increased yields of DHT implicated in matrix synthesis and direct antioxidant capacity, confirm the potential applications for enamel matrix derivative in periodontal regenerative procedures.
format Online
Article
Text
id pubmed-4031020
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-40310202014-06-12 Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment Al-Qattan, Tareq Soory, Mena J Funct Biomater Article Our study seeks to explore anabolic effects of a periodontal regenerative agent enamel matrix derivative (EMD). Its modulation by nicotine and the anti-oxidant glutathione (GSH) are investigated in human periosteal fibroblasts (HPF) and MG63 osteoblasts. Androgen biomarkers of oxidative stress and healing, resulting from radiolabeled androgen substrates are assayed. This in vitro model simulates a redox environment relevant to the periodontal lesion. It aims to confirm the hypothesis that EMD is an effective regenerative agent in a typically redox environment of the periodontal lesion. Monolayer cultures of MG63 osteoblasts and HPF established in culture medium are incubated with androgen substrates, and optimal concentrations of EMD, nicotine and GSH, alone and in combination. EMD significantly enhances yields of 5α-dihydrotestosterone (DHT) an effective bioactive metabolite, alone and in combination with GSH, to overcome oxidative effects of nicotine across cultures. The ‘in vitro’ findings of this study could be extrapolated to “in vivo” applications of EMD as an adjunctive regenerative therapeutic agent in an environment of chronic inflammation and oxidative stress. Increased yields of DHT implicated in matrix synthesis and direct antioxidant capacity, confirm the potential applications for enamel matrix derivative in periodontal regenerative procedures. MDPI 2012-02-29 /pmc/articles/PMC4031020/ /pubmed/24956521 http://dx.doi.org/10.3390/jfb3010143 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Al-Qattan, Tareq
Soory, Mena
Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment
title Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment
title_full Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment
title_fullStr Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment
title_full_unstemmed Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment
title_short Anabolic Actions of the Regenerative Agent Enamel Matrix Derivative (EMD) in Oral Periosteal Fibroblasts and MG 63 Osteoblasts, Modulation by Nicotine and Glutathione in a Redox Environment
title_sort anabolic actions of the regenerative agent enamel matrix derivative (emd) in oral periosteal fibroblasts and mg 63 osteoblasts, modulation by nicotine and glutathione in a redox environment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031020/
https://www.ncbi.nlm.nih.gov/pubmed/24956521
http://dx.doi.org/10.3390/jfb3010143
work_keys_str_mv AT alqattantareq anabolicactionsoftheregenerativeagentenamelmatrixderivativeemdinoralperiostealfibroblastsandmg63osteoblastsmodulationbynicotineandglutathioneinaredoxenvironment
AT soorymena anabolicactionsoftheregenerativeagentenamelmatrixderivativeemdinoralperiostealfibroblastsandmg63osteoblastsmodulationbynicotineandglutathioneinaredoxenvironment