Cargando…

Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jie, Xie, Guoqiang, Lv, Peng, Gao, Wenlan, Yuan, Peng, Qian, Liejia, Griebner, Uwe, Petrov, Valentin, Yu, Haohai, Zhang, Huaijin, Wang, Jiyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031483/
https://www.ncbi.nlm.nih.gov/pubmed/24853072
http://dx.doi.org/10.1038/srep05016
Descripción
Sumario:An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.