Cargando…
Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats
BACKGROUND: Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032255/ https://www.ncbi.nlm.nih.gov/pubmed/24857932 http://dx.doi.org/10.1371/journal.pone.0097436 |
_version_ | 1782317616730210304 |
---|---|
author | Ge, Yanhu Wu, Feixiang Sun, Xuejun Xiang, Zhenghua Yang, Liqun Huang, Shengdong Lu, Zhijie Sun, Yuming Yu, Wei-Feng |
author_facet | Ge, Yanhu Wu, Feixiang Sun, Xuejun Xiang, Zhenghua Yang, Liqun Huang, Shengdong Lu, Zhijie Sun, Yuming Yu, Wei-Feng |
author_sort | Ge, Yanhu |
collection | PubMed |
description | BACKGROUND: Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. METHODOLOGY/PRINCIPAL FINDINGS: In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. CONCLUSION/SIGNIFICANCE: Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite. |
format | Online Article Text |
id | pubmed-4032255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40322552014-05-28 Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats Ge, Yanhu Wu, Feixiang Sun, Xuejun Xiang, Zhenghua Yang, Liqun Huang, Shengdong Lu, Zhijie Sun, Yuming Yu, Wei-Feng PLoS One Research Article BACKGROUND: Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. METHODOLOGY/PRINCIPAL FINDINGS: In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. CONCLUSION/SIGNIFICANCE: Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite. Public Library of Science 2014-05-23 /pmc/articles/PMC4032255/ /pubmed/24857932 http://dx.doi.org/10.1371/journal.pone.0097436 Text en © 2014 Ge et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ge, Yanhu Wu, Feixiang Sun, Xuejun Xiang, Zhenghua Yang, Liqun Huang, Shengdong Lu, Zhijie Sun, Yuming Yu, Wei-Feng Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats |
title | Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats |
title_full | Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats |
title_fullStr | Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats |
title_full_unstemmed | Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats |
title_short | Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats |
title_sort | intrathecal infusion of hydrogen-rich normal saline attenuates neuropathic pain via inhibition of activation of spinal astrocytes and microglia in rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032255/ https://www.ncbi.nlm.nih.gov/pubmed/24857932 http://dx.doi.org/10.1371/journal.pone.0097436 |
work_keys_str_mv | AT geyanhu intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT wufeixiang intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT sunxuejun intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT xiangzhenghua intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT yangliqun intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT huangshengdong intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT luzhijie intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT sunyuming intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats AT yuweifeng intrathecalinfusionofhydrogenrichnormalsalineattenuatesneuropathicpainviainhibitionofactivationofspinalastrocytesandmicrogliainrats |