Cargando…

Evaluation of Schistosome Promoter Expression for Transgenesis and Genetic Analysis

Schistosome worms of the genus Schistosoma are the causative agents of schistosomiasis, a devastating parasitic disease affecting more than 240 million people worldwide. Schistosomes have complex life cycles, and have been challenging to manipulate genetically due to the dearth of molecular tools. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Shuang, Varrecchia, Melissa, Ishida, Kenji, Jolly, Emmitt R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032330/
https://www.ncbi.nlm.nih.gov/pubmed/24858918
http://dx.doi.org/10.1371/journal.pone.0098302
Descripción
Sumario:Schistosome worms of the genus Schistosoma are the causative agents of schistosomiasis, a devastating parasitic disease affecting more than 240 million people worldwide. Schistosomes have complex life cycles, and have been challenging to manipulate genetically due to the dearth of molecular tools. Although the use of gene overexpression, gene knockouts or knockdowns are straight-forward genetic tools applied in many model systems, gene misexpression and genetic manipulation of schistosome genes in vivo has been exceptionally challenging, and plasmid based transfection inducing gene expression is limited. We recently reported the use of polyethyleneimine (PEI) as a simple and effective method for schistosome transfection and gene expression. Here, we use PEI-mediated schistosome plasmid transgenesis to define and compare gene expression profiles from endogenous and nonendogenous promoters in the schistosomula stage of schistosomes that are potentially useful to misexpress (underexpress or overexpress) gene product levels. In addition, we overexpress schistosome genes in vivo using a strong promoter and show plasmid-based misregulation of genes in schistosomes, producing a clear and distinct phenotype- death. These data focus on the schistosomula stage, but they foreshadow strong potential for genetic characterization of schistosome molecular pathways, and potential for use in overexpression screens and drug resistance studies in schistosomes using plasmid-based gene expression.