Cargando…

Glutamate involvement in calcium–dependent migration of astrocytoma cells

BACKGROUND: Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate mig...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamadi, Abdelkader, Giannone, Grégory, Takeda, Kenneth, Rondé, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032497/
https://www.ncbi.nlm.nih.gov/pubmed/24860258
http://dx.doi.org/10.1186/1475-2867-14-42
_version_ 1782317653063368704
author Hamadi, Abdelkader
Giannone, Grégory
Takeda, Kenneth
Rondé, Philippe
author_facet Hamadi, Abdelkader
Giannone, Grégory
Takeda, Kenneth
Rondé, Philippe
author_sort Hamadi, Abdelkader
collection PubMed
description BACKGROUND: Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate might provoke active killing of neurons thereby producing space for cancer cells to proliferate and migrate. Previously, we observed that calcium promotes disassembly of integrin-containing focal adhesions in astrocytoma, thus providing a link between calcium signaling and cell migration. The aim of this study was to determine how calcium signaling and glutamate transmission cooperate to promote enhanced astrocytoma migration. METHODS: The wound-healing model was used to assay migration of human U87MG astrocytoma cells and allowed to monitor calcium signaling during the migration process. The effect of glutamate on calcium signaling was evaluated together with the amount of glutamate released by astrocytoma during cell migration. RESULTS: We observed that glutamate stimulates motility in serum-starved cells, whereas in the presence of serum, inhibitors of glutamate receptors reduce migration. Migration speed was also reduced in presence of an intracellular calcium chelator. During migration, cells displayed spontaneous Ca(2+) transients. L-THA, an inhibitor of glutamate re-uptake increased the frequency of Ca(2+) oscillations in oscillating cells and induced Ca(2+) oscillations in quiescent cells. The frequency of migration-associated Ca(2+) oscillations was reduced by prior incubation with glutamate receptor antagonists or with an anti-β1 integrin antibody. Application of glutamate induced increases in internal free Ca(2+) concentration ([Ca(2+)](i)). Finally we found that compounds known to increase [Ca(2+)](i) in astrocytomas such as thapsigagin, ionomycin or the metabotropic glutamate receptor agonist t-ACPD, are able to induce glutamate release. CONCLUSION: Our data demonstrate that glutamate increases migration speed in astrocytoma cells via enhancement of migration-associated Ca(2+) oscillations that in turn induce glutamate secretion via an autocrine mechanism. Thus, glutamate receptors are further validated as potential targets for astrocytoma cancer therapy.
format Online
Article
Text
id pubmed-4032497
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40324972014-05-25 Glutamate involvement in calcium–dependent migration of astrocytoma cells Hamadi, Abdelkader Giannone, Grégory Takeda, Kenneth Rondé, Philippe Cancer Cell Int Primary Research BACKGROUND: Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate might provoke active killing of neurons thereby producing space for cancer cells to proliferate and migrate. Previously, we observed that calcium promotes disassembly of integrin-containing focal adhesions in astrocytoma, thus providing a link between calcium signaling and cell migration. The aim of this study was to determine how calcium signaling and glutamate transmission cooperate to promote enhanced astrocytoma migration. METHODS: The wound-healing model was used to assay migration of human U87MG astrocytoma cells and allowed to monitor calcium signaling during the migration process. The effect of glutamate on calcium signaling was evaluated together with the amount of glutamate released by astrocytoma during cell migration. RESULTS: We observed that glutamate stimulates motility in serum-starved cells, whereas in the presence of serum, inhibitors of glutamate receptors reduce migration. Migration speed was also reduced in presence of an intracellular calcium chelator. During migration, cells displayed spontaneous Ca(2+) transients. L-THA, an inhibitor of glutamate re-uptake increased the frequency of Ca(2+) oscillations in oscillating cells and induced Ca(2+) oscillations in quiescent cells. The frequency of migration-associated Ca(2+) oscillations was reduced by prior incubation with glutamate receptor antagonists or with an anti-β1 integrin antibody. Application of glutamate induced increases in internal free Ca(2+) concentration ([Ca(2+)](i)). Finally we found that compounds known to increase [Ca(2+)](i) in astrocytomas such as thapsigagin, ionomycin or the metabotropic glutamate receptor agonist t-ACPD, are able to induce glutamate release. CONCLUSION: Our data demonstrate that glutamate increases migration speed in astrocytoma cells via enhancement of migration-associated Ca(2+) oscillations that in turn induce glutamate secretion via an autocrine mechanism. Thus, glutamate receptors are further validated as potential targets for astrocytoma cancer therapy. BioMed Central 2014-05-19 /pmc/articles/PMC4032497/ /pubmed/24860258 http://dx.doi.org/10.1186/1475-2867-14-42 Text en Copyright © 2014 Hamadi et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Primary Research
Hamadi, Abdelkader
Giannone, Grégory
Takeda, Kenneth
Rondé, Philippe
Glutamate involvement in calcium–dependent migration of astrocytoma cells
title Glutamate involvement in calcium–dependent migration of astrocytoma cells
title_full Glutamate involvement in calcium–dependent migration of astrocytoma cells
title_fullStr Glutamate involvement in calcium–dependent migration of astrocytoma cells
title_full_unstemmed Glutamate involvement in calcium–dependent migration of astrocytoma cells
title_short Glutamate involvement in calcium–dependent migration of astrocytoma cells
title_sort glutamate involvement in calcium–dependent migration of astrocytoma cells
topic Primary Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032497/
https://www.ncbi.nlm.nih.gov/pubmed/24860258
http://dx.doi.org/10.1186/1475-2867-14-42
work_keys_str_mv AT hamadiabdelkader glutamateinvolvementincalciumdependentmigrationofastrocytomacells
AT giannonegregory glutamateinvolvementincalciumdependentmigrationofastrocytomacells
AT takedakenneth glutamateinvolvementincalciumdependentmigrationofastrocytomacells
AT rondephilippe glutamateinvolvementincalciumdependentmigrationofastrocytomacells