Cargando…
Data fusion for automated non-destructive inspection
In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. More...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032559/ https://www.ncbi.nlm.nih.gov/pubmed/25002828 http://dx.doi.org/10.1098/rspa.2014.0167 |
_version_ | 1782317658055639040 |
---|---|
author | Brierley, N. Tippetts, T. Cawley, P. |
author_facet | Brierley, N. Tippetts, T. Cawley, P. |
author_sort | Brierley, N. |
collection | PubMed |
description | In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. |
format | Online Article Text |
id | pubmed-4032559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-40325592014-07-08 Data fusion for automated non-destructive inspection Brierley, N. Tippetts, T. Cawley, P. Proc Math Phys Eng Sci Research Articles In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. The Royal Society Publishing 2014-07-08 /pmc/articles/PMC4032559/ /pubmed/25002828 http://dx.doi.org/10.1098/rspa.2014.0167 Text en http://creativecommons.org/licenses/by/3.0/ © 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Brierley, N. Tippetts, T. Cawley, P. Data fusion for automated non-destructive inspection |
title | Data fusion for automated non-destructive inspection |
title_full | Data fusion for automated non-destructive inspection |
title_fullStr | Data fusion for automated non-destructive inspection |
title_full_unstemmed | Data fusion for automated non-destructive inspection |
title_short | Data fusion for automated non-destructive inspection |
title_sort | data fusion for automated non-destructive inspection |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032559/ https://www.ncbi.nlm.nih.gov/pubmed/25002828 http://dx.doi.org/10.1098/rspa.2014.0167 |
work_keys_str_mv | AT brierleyn datafusionforautomatednondestructiveinspection AT tippettst datafusionforautomatednondestructiveinspection AT cawleyp datafusionforautomatednondestructiveinspection |