Cargando…

Variation in Serotonin Transporter Expression Modulates Fear-Evoked Hemodynamic Responses and Theta-Frequency Neuronal Oscillations in the Amygdala

BACKGROUND: Gene association studies detect an influence of natural variation in the 5-hydroxytryptamine transporter (5-HTT) gene on multiple aspects of individuality in brain function, ranging from personality traits through to susceptibility to psychiatric disorders such as anxiety and depression....

Descripción completa

Detalles Bibliográficos
Autores principales: Barkus, Christopher, Line, Samantha J., Huber, Anna, Capitao, Liliana, Lima, Joao, Jennings, Katie, Lowry, John, Sharp, Trevor, Bannerman, David M., McHugh, Stephen B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032572/
https://www.ncbi.nlm.nih.gov/pubmed/24120093
http://dx.doi.org/10.1016/j.biopsych.2013.09.003
Descripción
Sumario:BACKGROUND: Gene association studies detect an influence of natural variation in the 5-hydroxytryptamine transporter (5-HTT) gene on multiple aspects of individuality in brain function, ranging from personality traits through to susceptibility to psychiatric disorders such as anxiety and depression. The neural substrates of these associations are unknown. Human neuroimaging studies suggest modulation of the amygdala by 5-HTT variation, but this hypothesis is controversial and unresolved, and difficult to investigate further in humans. METHODS: We used a mouse model in which the 5-HTT is overexpressed throughout the brain and recorded hemodynamic responses (using a novel in vivo voltammetric monitoring method, analogous to blood oxygen level–dependent functional magnetic resonance imaging) and local field potentials during Pavlovian fear conditioning. RESULTS: Increased 5-HTT expression impaired, but did not prevent, fear learning and significantly reduced amygdala hemodynamic responses to aversive cues. Increased 5-HTT expression was also associated with reduced theta oscillations, which were a feature of aversive cue presentation in controls. Moreover, in control mice, but not those with high 5-HTT expression, there was a strong correlation between theta power and the amplitude of the hemodynamic response. CONCLUSIONS: Direct experimental manipulation of 5-HTT expression levels throughout the brain markedly altered fear learning, amygdala hemodynamic responses, and neuronal oscillations.