Cargando…

Comparison of phenotypic methods for the detection of carbapenem non-susceptible Enterobacteriaceae

BACKGROUND: Multidrug resistance and, in particular, carbapenem resistance is spreading worldwide at an alarming rate, comprehending a variety of bacterial species and causing both nosocomial and community acquired outbursts. Early and efficient detection of infected patients or colonized carriers a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bartolini, Andrea, Frasson, Ilaria, Cavallaro, Antonietta, Richter, Sara N, Palù, Giorgio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032584/
https://www.ncbi.nlm.nih.gov/pubmed/24860620
http://dx.doi.org/10.1186/1757-4749-6-13
Descripción
Sumario:BACKGROUND: Multidrug resistance and, in particular, carbapenem resistance is spreading worldwide at an alarming rate, comprehending a variety of bacterial species and causing both nosocomial and community acquired outbursts. Early and efficient detection of infected patients or colonized carriers are mandatory steps in infection control and prevention of multidrug resistance diffusion. The latest EUCAST guidelines for detection of carbapenemase-producing Enterobacteriaceae have set low clinical breakpoints to ensure the maximum detection sensitivity of positive samples. Current workflows involve an initial screening step for species and resistance pattern detection, followed by phenotypic and/or genotypic confirmation. The aim of the present study was to assess the efficiency of six widely used and validated phenotypic assays for the detection of carbapenemases/AmpC in Enterobacteriaceae, to estimate the best workflow in the routine characterization of Enterobacteriaceae isolates. METHODS: A panel of 108 non-repetitive Enterobacteriaceae isolates with reduced susceptibility to carbapenems was analyzed by means of 1) Modified Hodge Test, 2) Metallo Beta Lactamase Etest, 3) Double disk test with EDTA, 4) Rosco Diagnostica KPC and MBL confirm kit (RDCK™), 5) AmpC Etest and 6) Cloxacillin inhibition test. Confirmation and validation of results was achieved by genotypic analysis. RESULTS: The most accurate identification of resistance determinants was obtained with the combined disc test (Rosco Diagnostica KPC and MBL confirm kit) which had to be coupled with the cloxacillin inhibition test for correct detection of AmpC enzymes. However, in general, phenotypic tests failed to characterize isolates harboring multiple carbapenem resistance determinants, which were successfully assessed only by PCR-based analysis. CONCLUSIONS: To detect and control the spread of pathogens with complicated resistance patterns, both optimized phenotypic analysis (i.e. Rosco Diagnostica KPC and MBL confirm kit coupled with the cloxacillin inhibition test) and genotypic assays are recommended in the routine diagnostic of clinical laboratories.