Cargando…
Frequent Statement and Dereference Elimination for Imperative and Object-Oriented Distributed Programs
This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-oriented distributed programs running on parallel machines equipped with hierarchical memories. The paper uses languages whose address spaces are globally partitioned. Di...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032663/ https://www.ncbi.nlm.nih.gov/pubmed/24892098 http://dx.doi.org/10.1155/2014/839121 |
Sumario: | This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-oriented distributed programs running on parallel machines equipped with hierarchical memories. The paper uses languages whose address spaces are globally partitioned. Distributed programs allow defining data layout and threads writing to and reading from other thread memories. Three type systems (for imperative distributed programs) are the tools of the proposed techniques. The first type system defines for every program point a set of calculated (ready) statements and memory accesses. The second type system uses an enriched version of types of the first type system and determines which of the ready statements and memory accesses are used later in the program. The third type system uses the information gather so far to eliminate unnecessary statement computations and memory accesses (the analysis of frequent statement and dereference elimination). Extensions to these type systems are also presented to cover object-oriented distributed programs. Two advantages of our work over related work are the following. The hierarchical style of concurrent parallel computers is similar to the memory model used in this paper. In our approach, each analysis result is assigned a type derivation (serves as a correctness proof). |
---|