Cargando…
Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending
A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived a...
Autores principales: | Jun, Ding, Song, Chen, Wei-Bin, Wen, Shao-Ming, Luo, Xia, Huang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032699/ https://www.ncbi.nlm.nih.gov/pubmed/24883403 http://dx.doi.org/10.1155/2014/520958 |
Ejemplares similares
-
A unified analytic solution approach to static bending and free vibration problems of rectangular thin plates
por: Li, Rui, et al.
Publicado: (2015) -
Analytical solution for bending vibration of a thin-walled cylinder rolling on a time-varying force
por: Le Bot, A., et al.
Publicado: (2018) -
Platonic Scattering Cancellation for Bending Waves in a Thin Plate
por: Farhat, M., et al.
Publicado: (2014) -
Estimating of Bending Force and Curvature of the Bending Plate in a Three-Roller Bending System Using Finite Element Simulation and Analytical Modeling
por: Gavrilescu, Ionel, et al.
Publicado: (2021) -
Boundary integral equation methods and numerical solutions: thin plates on an elastic foundation
por: Constanda, Christian, et al.
Publicado: (2016)