Cargando…
Commutators of Singular Integral Operators Satisfying a Variant of a Lipschitz Condition
Let T be a singular integral operator with its kernel satisfying |K(x − y) − ∑(k=1) (ℓ)B (k)(x)ϕ (k)(y)| ≤ C | y|(γ)/|x − y|(n+γ), |x | > 2 | y | > 0, where B (k) and ϕ (k) (k = 1,…, ℓ) are appropriate functions and γ and C are positive constants. For [Formula: see text] with b (j) ∈ BMO(ℝ(n...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032734/ https://www.ncbi.nlm.nih.gov/pubmed/24892067 http://dx.doi.org/10.1155/2014/641705 |
Sumario: | Let T be a singular integral operator with its kernel satisfying |K(x − y) − ∑(k=1) (ℓ)B (k)(x)ϕ (k)(y)| ≤ C | y|(γ)/|x − y|(n+γ), |x | > 2 | y | > 0, where B (k) and ϕ (k) (k = 1,…, ℓ) are appropriate functions and γ and C are positive constants. For [Formula: see text] with b (j) ∈ BMO(ℝ(n)), the multilinear commutator [Formula: see text] generated by T and [Formula: see text] is formally defined by [Formula: see text]. In this paper, the weighted L (p)-boundedness and the weighted weak type LlogL estimate for the multilinear commutator [Formula: see text] are established. |
---|