Cargando…
End-Completely-Regular and End-Inverse Lexicographic Products of Graphs
A graph X is said to be End-completely-regular (resp., End-inverse) if its endomorphism monoid End(X) is completely regular (resp., inverse). In this paper, we will show that if X[Y] is End-completely-regular (resp., End-inverse), then both X and Y are End-completely-regular (resp., End-inverse). We...
Autores principales: | Hou, Hailong, Gu, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032769/ https://www.ncbi.nlm.nih.gov/pubmed/24892047 http://dx.doi.org/10.1155/2014/432073 |
Ejemplares similares
-
Lexicographic solutions for coalitional rankings
por: Algaba, Encarnación, et al.
Publicado: (2021) -
Stochastic Games with Lexicographic Reachability-Safety Objectives
por: Chatterjee, Krishnendu, et al.
Publicado: (2020) -
The State Complexity of Lexicographically Smallest Words and Computing Successors
por: Fleischer, Lukas, et al.
Publicado: (2020) -
Completeness and regularity of generalized fuzzy graphs
por: Samanta, Sovan, et al.
Publicado: (2016) -
Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion
por: Li, Zhuliu, et al.
Publicado: (2021)