Cargando…
Inputs drive cell phenotype variability
What is the significance of the extensive variability observed in individual members of a single-cell phenotype? This question is particularly relevant to the highly differentiated organization of the brain. In this study, for the first time, we analyze the in vivo variability within a neuronal phen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032857/ https://www.ncbi.nlm.nih.gov/pubmed/24671852 http://dx.doi.org/10.1101/gr.161802.113 |
_version_ | 1782317711039135744 |
---|---|
author | Park, James Brureau, Anthony Kernan, Kate Starks, Alexandria Gulati, Sonali Ogunnaike, Babatunde Schwaber, James Vadigepalli, Rajanikanth |
author_facet | Park, James Brureau, Anthony Kernan, Kate Starks, Alexandria Gulati, Sonali Ogunnaike, Babatunde Schwaber, James Vadigepalli, Rajanikanth |
author_sort | Park, James |
collection | PubMed |
description | What is the significance of the extensive variability observed in individual members of a single-cell phenotype? This question is particularly relevant to the highly differentiated organization of the brain. In this study, for the first time, we analyze the in vivo variability within a neuronal phenotype in terms of input type. We developed a large-scale gene-expression data set from several hundred single brainstem neurons selected on the basis of their specific synaptic input types. The results show a surprising organizational structure in which neuronal variability aligned with input type along a continuum of sub-phenotypes and corresponding gene regulatory modules. Correlations between these regulatory modules and specific cellular states were stratified by synaptic input type. Moreover, we found that the phenotype gradient and correlated regulatory modules were maintained across subjects. As these specific cellular states are a function of the inputs received, the stability of these states represents “attractor”-like states along a dynamic landscape that is influenced and shaped by inputs, enabling distinct state-dependent functional responses. We interpret the phenotype gradient as arising from analog tuning of underlying regulatory networks driven by distinct inputs to individual cells. Our results change the way we understand how a phenotypic population supports robust biological function by integrating the environmental experience of individual cells. Our results provide an explanation of the functional significance of the pervasive variability observed within a cell type and are broadly applicable to understanding the relationship between cellular input history and cell phenotype within all tissues. |
format | Online Article Text |
id | pubmed-4032857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40328572014-12-01 Inputs drive cell phenotype variability Park, James Brureau, Anthony Kernan, Kate Starks, Alexandria Gulati, Sonali Ogunnaike, Babatunde Schwaber, James Vadigepalli, Rajanikanth Genome Res Research What is the significance of the extensive variability observed in individual members of a single-cell phenotype? This question is particularly relevant to the highly differentiated organization of the brain. In this study, for the first time, we analyze the in vivo variability within a neuronal phenotype in terms of input type. We developed a large-scale gene-expression data set from several hundred single brainstem neurons selected on the basis of their specific synaptic input types. The results show a surprising organizational structure in which neuronal variability aligned with input type along a continuum of sub-phenotypes and corresponding gene regulatory modules. Correlations between these regulatory modules and specific cellular states were stratified by synaptic input type. Moreover, we found that the phenotype gradient and correlated regulatory modules were maintained across subjects. As these specific cellular states are a function of the inputs received, the stability of these states represents “attractor”-like states along a dynamic landscape that is influenced and shaped by inputs, enabling distinct state-dependent functional responses. We interpret the phenotype gradient as arising from analog tuning of underlying regulatory networks driven by distinct inputs to individual cells. Our results change the way we understand how a phenotypic population supports robust biological function by integrating the environmental experience of individual cells. Our results provide an explanation of the functional significance of the pervasive variability observed within a cell type and are broadly applicable to understanding the relationship between cellular input history and cell phenotype within all tissues. Cold Spring Harbor Laboratory Press 2014-06 /pmc/articles/PMC4032857/ /pubmed/24671852 http://dx.doi.org/10.1101/gr.161802.113 Text en © 2014 Park et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Research Park, James Brureau, Anthony Kernan, Kate Starks, Alexandria Gulati, Sonali Ogunnaike, Babatunde Schwaber, James Vadigepalli, Rajanikanth Inputs drive cell phenotype variability |
title | Inputs drive cell phenotype variability |
title_full | Inputs drive cell phenotype variability |
title_fullStr | Inputs drive cell phenotype variability |
title_full_unstemmed | Inputs drive cell phenotype variability |
title_short | Inputs drive cell phenotype variability |
title_sort | inputs drive cell phenotype variability |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032857/ https://www.ncbi.nlm.nih.gov/pubmed/24671852 http://dx.doi.org/10.1101/gr.161802.113 |
work_keys_str_mv | AT parkjames inputsdrivecellphenotypevariability AT brureauanthony inputsdrivecellphenotypevariability AT kernankate inputsdrivecellphenotypevariability AT starksalexandria inputsdrivecellphenotypevariability AT gulatisonali inputsdrivecellphenotypevariability AT ogunnaikebabatunde inputsdrivecellphenotypevariability AT schwaberjames inputsdrivecellphenotypevariability AT vadigepallirajanikanth inputsdrivecellphenotypevariability |