Cargando…
Learning to maximize reward rate: a model based on semi-Markov decision processes
When animals have to make a number of decisions during a limited time interval, they face a fundamental problem: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will...
Autores principales: | Khodadadi, Arash, Fakhari, Pegah, Busemeyer, Jerome R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033239/ https://www.ncbi.nlm.nih.gov/pubmed/24904252 http://dx.doi.org/10.3389/fnins.2014.00101 |
Ejemplares similares
-
Application of Quantum—Markov Open System Models to Human Cognition and Decision
por: Busemeyer, Jerome, et al.
Publicado: (2020) -
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
por: Nakamura, Tomoaki, et al.
Publicado: (2017) -
An immediate-return reinforcement learning for the atypical Markov decision processes
por: Pan, Zebang, et al.
Publicado: (2022) -
Semi-Markov processes
por: Grabski
Publicado: (2014) -
Comparing quantum versus Markov random walk models of judgements measured by rating scales
por: Wang, Z., et al.
Publicado: (2016)