Cargando…
A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces
Brain-Machine Interfaces (BMIs) can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have prese...
Autores principales: | Prins, Noeline W., Sanchez, Justin C., Prasad, Abhishek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033619/ https://www.ncbi.nlm.nih.gov/pubmed/24904257 http://dx.doi.org/10.3389/fnins.2014.00111 |
Ejemplares similares
-
Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization
por: Pohlmeyer, Eric A., et al.
Publicado: (2014) -
Combining backpropagation with Equilibrium Propagation to improve an Actor-Critic reinforcement learning framework
por: Kubo, Yoshimasa, et al.
Publicado: (2022) -
The Actor-Dueling-Critic Method for Reinforcement Learning
por: Wu, Menghao, et al.
Publicado: (2019) -
Spinal cord neural interfacing in common marmosets (Callithrix jacchus)
por: Prins, Noeline W, et al.
Publicado: (2020) -
Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning
por: Dunovan, Kyle, et al.
Publicado: (2016)