Cargando…
Scope and Limitations of 2-Deoxy- and 2,6-Dideoxyglycosyl Bromides as Donors for the Synthesis of β-2-Deoxy- and β-2,6-Dideoxyglycosides
[Image: see text] It is shown that 2-deoxy- and 2,6-dideoxyglycosyl bromides can be prepared in high yield (72–94%) and engaged in glycosylation reactions with β:α selectivities ≥6:1. Yields of product are 44–90%. Fully armed 2-deoxyglycoside donors are viable, while 2,6-dideoxyglycosides require on...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033630/ https://www.ncbi.nlm.nih.gov/pubmed/24786757 http://dx.doi.org/10.1021/ol501101f |
Sumario: | [Image: see text] It is shown that 2-deoxy- and 2,6-dideoxyglycosyl bromides can be prepared in high yield (72–94%) and engaged in glycosylation reactions with β:α selectivities ≥6:1. Yields of product are 44–90%. Fully armed 2-deoxyglycoside donors are viable, while 2,6-dideoxyglycosides require one electron-withdrawing substituent for high efficiency and β-selectivity. Equatorial C-3 ester protecting groups decrease β-selectivity, and donors bearing an axial C-3 substituent are not suitable. The method is compatible with azide-containing donors and acid-sensitive functional groups. |
---|