Cargando…

Dual Allosteric Effect in Glycine/NMDA Receptor Antagonism: A Comparative QSAR Approach

A comparative Hansch type QSAR study was conducted using multiple regression analysis on various sets of quinoxalines, quinoxalin-4-ones, quinazoline-2-carboxylates, 4-hydroxyquinolin-2(1H)-ones, 2-carboxytetrahydroquinolines, phenyl-hydroxy-quinolones, nitroquinolones and 4-substituted-3-phenylquin...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Manish, Gupta, Vipin B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034086/
http://dx.doi.org/10.3390/ph3103167
Descripción
Sumario:A comparative Hansch type QSAR study was conducted using multiple regression analysis on various sets of quinoxalines, quinoxalin-4-ones, quinazoline-2-carboxylates, 4-hydroxyquinolin-2(1H)-ones, 2-carboxytetrahydroquinolines, phenyl-hydroxy-quinolones, nitroquinolones and 4-substituted-3-phenylquinolin-2(1H)-ones as selective glycine/NMDA site antagonists. Ten statistically validated equations were developed, which indicated the importance of CMR, Verloop’s sterimol L1 and ClogP parameters in contributing towards biological activity. Interestingly, normal and inverse parabolic relationships were found with CMR in different series, indicating a dual allosteric binding mode in glycine/NMDA antagonism. Equations reveal an optimum CMR of 10 ± 10% is required for good potency of antagonists. Other equations indicate the presence of anionic functionality at 4-position of quinoline/quinolone ring system is not absolutely required for effective binding. The observations are laterally validated and in accordance with previous studies.