Cargando…

In Silico Design of BACE1 Inhibitor for Alzheimer's Disease by Traditional Chinese Medicine

The β-site APP cleaving enzyme 1 (BACE1) is an important target for causing Alzheimer's disease (AD), due to the brain deposition peptide amyloid beta (Aβ) require cleavages of amyloid precursor protein (APP) by BACE1 and γ-secretase, but treatments of AD still have side effect in recent therap...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Hung-Jin, Lee, Cheng-Chun, Chen, Calvin Yu-Chian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034430/
https://www.ncbi.nlm.nih.gov/pubmed/24900984
http://dx.doi.org/10.1155/2014/741703
Descripción
Sumario:The β-site APP cleaving enzyme 1 (BACE1) is an important target for causing Alzheimer's disease (AD), due to the brain deposition peptide amyloid beta (Aβ) require cleavages of amyloid precursor protein (APP) by BACE1 and γ-secretase, but treatments of AD still have side effect in recent therapy. This study utilizes the world largest traditional Chinese medicine (TCM) database and database screening to provide potential BACE1 inhibited compound. Molecular dynamics (MD) simulation was carried out to observe the dynamics structure after ligand binding. We found that Triptofordin B1 has less toxicity than pyrimidine analogue, which has more potent binding affinity with BACE1. For trajectory analysis, all conformations are tending to be stable during 5000 ps simulation time. In dynamic protein validation, the residues of binding region are still stable after MD simulation. For snapshot comparison, we found that Triptofordin B1 could reduce the binding cavity; the results reveal that Triptofordin B1 could bind to BACE1 and better than control, which could be used as potential lead drug to design novel BACE1 inhibitor for AD therapy.