Cargando…
Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling
Sonic Hedgehog (SHH) and WNT proteins are key regulators in many developmental processes, like embryonic patterning and brain development. In the brain, SHH is expressed in a gradient starting in the floor plate (FP) progressing ventrally in the midbrain, where it is thought to be involved in the de...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035267/ https://www.ncbi.nlm.nih.gov/pubmed/24865218 http://dx.doi.org/10.1371/journal.pone.0097926 |
_version_ | 1782318034880299008 |
---|---|
author | Mesman, Simone von Oerthel, Lars Smidt, Marten P. |
author_facet | Mesman, Simone von Oerthel, Lars Smidt, Marten P. |
author_sort | Mesman, Simone |
collection | PubMed |
description | Sonic Hedgehog (SHH) and WNT proteins are key regulators in many developmental processes, like embryonic patterning and brain development. In the brain, SHH is expressed in a gradient starting in the floor plate (FP) progressing ventrally in the midbrain, where it is thought to be involved in the development and specification of mesodiencephalic dopaminergic (mdDA) neurons. GLI2A-mediated SHH-signaling induces the expression of Gli1, which is inhibited when cells start expressing SHH themselves. To determine whether mdDA neurons receive GLI2A-mediated SHH-signaling during differentiation, we used a BAC-transgenic mouse model expressing eGFP under the control of the Gli1 promoter. This mouse-model allowed for mapping of GLI2A-mediated SHH-signaling temporal and spatial in the mouse midbrain. Since mdDA neurons are born from E10.5, peaking at E11.0–E12.0, we examined Gli1-eGFP embryos at E11.5, E12.5, and E13.5, indicating whether Gli1 was induced before or during mdDA development and differentiation. Our data indicate that GLI2A-mediated SHH-signaling is not involved in mdDA neuronal differentiation. However, it appears to be involved in the differentiation of neurons which make up a subset of the red nucleus (RN). In order to detect whether mdDA neuronal differentiation may be under the control of canonical WNT-signaling, we used a transgenic mouse-line expressing LacZ under the influence of stable β-catenin. Here, we show that TH(+) neurons of the midbrain receive canonical WNT-signaling during differentiation. Therefore, we suggest that early SHH-signaling is indirectly involved in mdDA development through early patterning of the midbrain area, whereas canonical WNT-signaling is directly involved in the differentiation of the mdDA neuronal population. |
format | Online Article Text |
id | pubmed-4035267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40352672014-06-02 Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling Mesman, Simone von Oerthel, Lars Smidt, Marten P. PLoS One Research Article Sonic Hedgehog (SHH) and WNT proteins are key regulators in many developmental processes, like embryonic patterning and brain development. In the brain, SHH is expressed in a gradient starting in the floor plate (FP) progressing ventrally in the midbrain, where it is thought to be involved in the development and specification of mesodiencephalic dopaminergic (mdDA) neurons. GLI2A-mediated SHH-signaling induces the expression of Gli1, which is inhibited when cells start expressing SHH themselves. To determine whether mdDA neurons receive GLI2A-mediated SHH-signaling during differentiation, we used a BAC-transgenic mouse model expressing eGFP under the control of the Gli1 promoter. This mouse-model allowed for mapping of GLI2A-mediated SHH-signaling temporal and spatial in the mouse midbrain. Since mdDA neurons are born from E10.5, peaking at E11.0–E12.0, we examined Gli1-eGFP embryos at E11.5, E12.5, and E13.5, indicating whether Gli1 was induced before or during mdDA development and differentiation. Our data indicate that GLI2A-mediated SHH-signaling is not involved in mdDA neuronal differentiation. However, it appears to be involved in the differentiation of neurons which make up a subset of the red nucleus (RN). In order to detect whether mdDA neuronal differentiation may be under the control of canonical WNT-signaling, we used a transgenic mouse-line expressing LacZ under the influence of stable β-catenin. Here, we show that TH(+) neurons of the midbrain receive canonical WNT-signaling during differentiation. Therefore, we suggest that early SHH-signaling is indirectly involved in mdDA development through early patterning of the midbrain area, whereas canonical WNT-signaling is directly involved in the differentiation of the mdDA neuronal population. Public Library of Science 2014-05-27 /pmc/articles/PMC4035267/ /pubmed/24865218 http://dx.doi.org/10.1371/journal.pone.0097926 Text en © 2014 Mesman et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mesman, Simone von Oerthel, Lars Smidt, Marten P. Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling |
title | Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling |
title_full | Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling |
title_fullStr | Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling |
title_full_unstemmed | Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling |
title_short | Mesodiencephalic Dopaminergic Neuronal Differentiation Does Not Involve GLI2A-Mediated SHH-Signaling and Is under the Direct Influence of Canonical WNT Signaling |
title_sort | mesodiencephalic dopaminergic neuronal differentiation does not involve gli2a-mediated shh-signaling and is under the direct influence of canonical wnt signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035267/ https://www.ncbi.nlm.nih.gov/pubmed/24865218 http://dx.doi.org/10.1371/journal.pone.0097926 |
work_keys_str_mv | AT mesmansimone mesodiencephalicdopaminergicneuronaldifferentiationdoesnotinvolvegli2amediatedshhsignalingandisunderthedirectinfluenceofcanonicalwntsignaling AT vonoerthellars mesodiencephalicdopaminergicneuronaldifferentiationdoesnotinvolvegli2amediatedshhsignalingandisunderthedirectinfluenceofcanonicalwntsignaling AT smidtmartenp mesodiencephalicdopaminergicneuronaldifferentiationdoesnotinvolvegli2amediatedshhsignalingandisunderthedirectinfluenceofcanonicalwntsignaling |