Cargando…

Antioxidative nanofullerol prevents intervertebral disk degeneration

Compelling evidence suggests that reactive oxygen species (ROS) play a pivotal role in disk degeneration. Fullerol nanoparticles prepared in aqueous solution have been demonstrated to have outstanding ability to scavenge ROS. In this report, in vitro and in vivo models were used to study the efficac...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xinlin, Jin, Li, Yao, Lu, Shen, Francis H, Shimer, Adam L, Li, Xudong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035310/
https://www.ncbi.nlm.nih.gov/pubmed/24876775
http://dx.doi.org/10.2147/IJN.S60853
Descripción
Sumario:Compelling evidence suggests that reactive oxygen species (ROS) play a pivotal role in disk degeneration. Fullerol nanoparticles prepared in aqueous solution have been demonstrated to have outstanding ability to scavenge ROS. In this report, in vitro and in vivo models were used to study the efficacy of fullerol in preventing disk degeneration. For in vitro experiments, a pro-oxidant H(2)O(2) or an inflammatory cytokine interleukin (IL)-1β was employed to induce degenerated phenotypes in human nucleus pulposus cells encapsulated in alginate beads, and fullerol was added in the culture medium. For the animal study, an annulus-puncture model with rabbit was created, and fullerol was injected into disks. It was shown that cytotoxicity and cellular ROS level induced by H(2)O(2) were significantly diminished by fullerol. IL-1β-induced nitric oxide generation in culture medium was suppressed by fullerol as well. Gene-profile and biochemical assays showed that fullerol effectively reversed the matrix degradation caused by either H(2)O(2) or IL-1β. The animal study delineated that intradiskal injection of fullerol prevented disk degeneration, increasing water and proteoglycan content and inhibiting ectopic bone formation. These results suggest that antioxidative fullerol may have a potential therapeutic application for disk degeneration.