Cargando…
Detecting a Weak Association by Testing its Multiple Perturbations: a Data Mining Approach
Many risk factors/interventions in epidemiologic/biomedical studies are of minuscule effects. To detect such weak associations, one needs a study with a very large sample size (the number of subjects, n). The n of a study can be increased but unfortunately only to an extent. Here, we propose a novel...
Autores principales: | Lo, Min-Tzu, Lee, Wen-Chung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035575/ https://www.ncbi.nlm.nih.gov/pubmed/24866319 http://dx.doi.org/10.1038/srep05081 |
Ejemplares similares
-
Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach
por: Lee, Wen-Chung
Publicado: (2014) -
Canalization of Phenotypes—When the Transcriptome is Constantly but Weakly Perturbed
por: Lu, Guang-An, et al.
Publicado: (2023) -
Non-perturbative renormalization in QCD+QED and its applications to weak decays
por: Di Carlo, Matteo, et al.
Publicado: (2019) -
Intrusion detection: a data mining approach
por: Sengupta, Nandita, et al.
Publicado: (2020) -
Pharmacovigilance: A data mining approach to signal detection
por: Chakraborty, Bhaswat S.
Publicado: (2015)