Cargando…

Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process

This manuscript reports a new type of drug-loaded core-shell nanofibers that provide tunable biphasic release of quercetin. The nanofibers were fabricated using a modified coaxial electrospinning process, in which a polyvinyl chloride (PVC)-coated concentric spinneret was employed. Poly (vinyl pyrro...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chen, Wang, Zhuan-Hua, Yu, Deng-Guang, Williams, Gareth R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035684/
https://www.ncbi.nlm.nih.gov/pubmed/24940180
http://dx.doi.org/10.1186/1556-276X-9-258
Descripción
Sumario:This manuscript reports a new type of drug-loaded core-shell nanofibers that provide tunable biphasic release of quercetin. The nanofibers were fabricated using a modified coaxial electrospinning process, in which a polyvinyl chloride (PVC)-coated concentric spinneret was employed. Poly (vinyl pyrrolidone) (PVP) and ethyl cellulose (EC) were used as the polymer matrices to form the shell and core parts of the nanofibers, respectively. Scanning and transmission electron microscopy demonstrated that the nanofibers had linear morphologies and core-shell structures. The quercetin was found to be present in the nanofibers in the amorphous physical status, on the basis of X-ray diffraction results. In vitro release profiles showed that the PVP shell very rapidly freed its drug cargo into the solution, while the EC core provided the succedent sustained release. Variation of the drug loading permitted the release profiles to be tuned.