Cargando…
Improving the sensitivity of sample clustering by leveraging gene co-expression networks in variable selection
BACKGROUND: Many variable selection techniques have been proposed for the clustering of gene expression data. While these methods tend to filter out irrelevant genes and identify informative genes that contribute to a clustering solution, they are based on criteria that do not consider the potential...
Autores principales: | Wang, Zixing, Lucas, F Anthony San, Qiu, Peng, Liu, Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035826/ https://www.ncbi.nlm.nih.gov/pubmed/24885641 http://dx.doi.org/10.1186/1471-2105-15-153 |
Ejemplares similares
-
Identifying microRNA targets in different gene regions
por: Xu, Wenlong, et al.
Publicado: (2014) -
Leveraging pleiotropic association using sparse group variable selection in genomics data
por: Sutton, Matthew, et al.
Publicado: (2022) -
Leveraging the Variability of Pharmacovigilance Disproportionality Analyses to Improve Signal Detection Performances
por: Khouri, Charles, et al.
Publicado: (2021) -
Balancing the transcriptome: leveraging sample similarity to improve measures of gene specificity
por: Bondhus, Leroy, et al.
Publicado: (2022) -
Leveraging network structure to improve pooled testing efficiency
por: Sewell, Daniel K.
Publicado: (2022)