Cargando…
Semi-supervised consensus clustering for gene expression data analysis
BACKGROUND: Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustn...
Autores principales: | Wang, Yunli, Pan, Youlian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036113/ https://www.ncbi.nlm.nih.gov/pubmed/24920961 http://dx.doi.org/10.1186/1756-0381-7-7 |
Ejemplares similares
-
Prior knowledge guided eQTL mapping for identifying candidate genes
por: Wang, Yunli, et al.
Publicado: (2016) -
Semi-supervised discovery of differential genes
por: Oba, Shigeyuki, et al.
Publicado: (2006) -
scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data
por: Ranjan, Bobby, et al.
Publicado: (2021) -
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
por: Yan, Cheng, et al.
Publicado: (2019) -
A formal concept analysis approach to consensus clustering of multi-experiment expression data
por: Hristoskova, Anna, et al.
Publicado: (2014)