Cargando…

Development, Characterizations and Biocompatibility Evaluations of Intravitreal Lipid Implants

BACKGROUND: The treatment of posterior eye diseases is always challenging mainly due to inaccessibility of the region. Many drugs are currently delivered by repeated intraocular injections. OBJECTIVES: The purpose of this study was to investigate the potential applications of natural triglycerides a...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamaddon, Lana, Mostafavi, Abolfazl, Riazi-esfahani, Mohammad, Karkhane, Reza, Aghazadeh, Sara, Rafiee-Tehrani, Morteza, Abedin Dorkoosh, Farid, Asadi Amoli, Fahimeh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: DOCS 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036376/
https://www.ncbi.nlm.nih.gov/pubmed/24872944
Descripción
Sumario:BACKGROUND: The treatment of posterior eye diseases is always challenging mainly due to inaccessibility of the region. Many drugs are currently delivered by repeated intraocular injections. OBJECTIVES: The purpose of this study was to investigate the potential applications of natural triglycerides as alternative carriers to synthetic polymers in terms of drug release profile and also biocompatibility for intraocular use. MATERIALS AND METHODS: In vitro/in vivo evaluations of intravitreal implants fabricated from the physiological lipid, glyceride tripalmitate containing clindamycin phosphate as a model drug was performed. The micro-implants with average diameter of 0.4 mm were fabricated via a hot melt extrusion method. The extrudates were analyzed using scanning electron microscopy, differential scanning calorimetry, and in vitro drug dissolution studies. For biocompatibility, the implants were implanted into rabbit eyes. Clinical investigations including fundus observations, electroretinography as well as histological evaluations were performed. RESULTS: In vitro tests guaranteed usefulness of the production method for preparing the homogenous mixture of the drug and lipid without affecting thermal and crystalinity characteristics of the components. In vitro releases indicated a bi-phasic pattern for lower lipid ratios, which were completed by the end of day three. With higher lipid ratios, more controlled release profiles were achieved until about ten days for a lipid ratio of 95%. Clinical observations did not show any abnormalities up to two months after implantation into the rabbit eye. CONCLUSIONS: These results suggest that although the implant could not adequately retard release of the present drug model yet, due to good physical characteristics and in vivo biocompatibility, it can represent a suitable device for loading wide ranges of therapeutics in treatment of many kinds of retinochoroidal disorders.