Cargando…
Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1
An important mechanism for Al(3+) tolerance in wheat is exudation of malate anions from the root apex through activation of malate-permeable TaALMT1 channels. Here, the effect of ethylene on Al(3+)-activated efflux of malate was investigated using Al(3+)-tolerant wheat genotype ET8, which has high e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036508/ https://www.ncbi.nlm.nih.gov/pubmed/24668874 http://dx.doi.org/10.1093/jxb/eru123 |
Sumario: | An important mechanism for Al(3+) tolerance in wheat is exudation of malate anions from the root apex through activation of malate-permeable TaALMT1 channels. Here, the effect of ethylene on Al(3+)-activated efflux of malate was investigated using Al(3+)-tolerant wheat genotype ET8, which has high expression of TaALMT1. Exposure of ET8 plants to Al(3+) enhanced ethylene evolution in root apices. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene gas suppressed Al(3+)-induced malate efflux from root apices, whereas the intracellular malate concentrations in roots were not affected. Malate efflux from root apices was enhanced in the presence of Al(3+) by two antagonists of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and 2-aminoisobutyric acid (AIB). An increase in Al accumulation in root apices was observed when treated with ACC, whereas AVG and AIB suppressed Al accumulation in root apices. Al(3+)-induced inhibition of root elongation was ameliorated by pretreatment with AIB. In addition, ethylene donor (Ethrel) also inhibited Al(3+)-induced malate efflux from tobacco cells transformed with TaALMT1. ACC and the anion-channel blocker niflumate had a similar and non-additive effect on Al-induced malate efflux from root apices. Treatment of ET8 plants with ACC enhanced expression of TaALMT1, suggesting that the inhibitory effect of ethylene on Al-induced malate efflux is unlikely to occur at the transcriptional level. These findings indicate that ethylene may behave as a negative regulator of Al(3+)-induced malate efflux by targeting TaALMT1-mediated malate efflux by an unknown mechanism. |
---|