Cargando…

Requirement for A-type cyclin-dependent kinase and cyclins for the terminal division in the stomatal lineage of Arabidopsis

The Arabidopsis stoma is a specialized epidermal valve made up of a pair of guard cells around a pore whose aperture controls gas exchange between the shoot and atmosphere. Guard cells (GCs) are produced by a symmetric division of guard mother cells (GMCs). The R2R3-MYB transcription factor FOUR LIP...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Kezhen, Wang, Hongzhe, Xue, Shan, Qu, Xiaoxiao, Zou, Junjie, Le, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036514/
https://www.ncbi.nlm.nih.gov/pubmed/24687979
http://dx.doi.org/10.1093/jxb/eru139
Descripción
Sumario:The Arabidopsis stoma is a specialized epidermal valve made up of a pair of guard cells around a pore whose aperture controls gas exchange between the shoot and atmosphere. Guard cells (GCs) are produced by a symmetric division of guard mother cells (GMCs). The R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 restrict the division of a GMC to one. Previously, the upstream regions of several core cell cycle genes were identified as the direct targets of FLP/MYB88, including the B-type cyclin-dependent kinase CDKB1;1 and A2-type cyclin CYCA2;3. Here we show that CDKA;1 is also an immediate direct target of FLP/MYB88 through the binding to cis-regulatory elements in the CDKA;1 promoter region. CDKA;1 activity is required not only for normal GMC divisions but also for the excessive cell overproliferation in flp myb88 mutant GMCs. The impaired defects of GMC division in cdkb1;1 1;2 mutants could be partially rescued by a stage-specific expression of CDKA;1. Although targeted overexpression of CDKA;1 does not affect stomatal development, ectopic expression of the D3-type cyclin CYCD3;2 induces GC subdivision, resulting in a stoma with 3–4 GCs instead of the normal two. Co-overexpression of CDKA;1 with CYCD3;2, but not with CYCA2;3, confers a synergistic effect with respect to GC subdivision. Thus, in addition to a role in stomatal formative asymmetric divisions at early developmental stages, CDKA;1 is needed in triggering GMC symmetric divisions at the late stage of stomatal development. However, timely down-regulation of CDKA;1–CYCD3 activity is required for restriction of GC proliferation.