Cargando…
Simple Methods of Determining Confidence Intervals for Functions of Estimates in Published Results
Often, the reader of a published paper is interested in a comparison of parameters that has not been presented. It is not possible to make inferences beyond point estimation since the standard error for the contrast of the estimated parameters depends upon the (unreported) correlation. This study ex...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037217/ https://www.ncbi.nlm.nih.gov/pubmed/24869806 http://dx.doi.org/10.1371/journal.pone.0098498 |
Sumario: | Often, the reader of a published paper is interested in a comparison of parameters that has not been presented. It is not possible to make inferences beyond point estimation since the standard error for the contrast of the estimated parameters depends upon the (unreported) correlation. This study explores approaches to obtain valid confidence intervals when the correlation [Image: see text] is unknown. We illustrate three proposed approaches using data from the National Health Interview Survey. The three approaches include the Bonferroni method and the standard confidence interval assuming [Image: see text] (most conservative) or [Image: see text] (when the correlation is known to be non-negative). The Bonferroni approach is found to be the most conservative. For the difference in two estimated parameter, the standard confidence interval assuming [Image: see text] yields a 95% confidence interval that is approximately 12.5% narrower than the Bonferroni confidence interval; when the correlation is known to be positive, the standard 95% confidence interval assuming [Image: see text] is approximately 38% narrower than the Bonferroni. In summary, this article demonstrates simple methods to determine confidence intervals for unreported comparisons. We suggest use of the standard confidence interval assuming [Image: see text] if no information is available or [Image: see text] if the correlation is known to be non-negative. |
---|