Cargando…
Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders
BACKGROUND: Although major concerns exist regarding the potential consequences of human exposure to nanoparticles (NP), no human toxicological data is currently available. To address this issue, we took welders, who present various adverse respiratory outcomes, as a model population of occupational...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037282/ https://www.ncbi.nlm.nih.gov/pubmed/24885771 http://dx.doi.org/10.1186/1743-8977-11-23 |
_version_ | 1782318234931822592 |
---|---|
author | Andujar, Pascal Simon-Deckers, Angélique Galateau-Sallé, Françoise Fayard, Barbara Beaune, Gregory Clin, Bénédicte Billon-Galland, Marie-Annick Durupthy, Olivier Pairon, Jean-Claude Doucet, Jean Boczkowski, Jorge Lanone, Sophie |
author_facet | Andujar, Pascal Simon-Deckers, Angélique Galateau-Sallé, Françoise Fayard, Barbara Beaune, Gregory Clin, Bénédicte Billon-Galland, Marie-Annick Durupthy, Olivier Pairon, Jean-Claude Doucet, Jean Boczkowski, Jorge Lanone, Sophie |
author_sort | Andujar, Pascal |
collection | PubMed |
description | BACKGROUND: Although major concerns exist regarding the potential consequences of human exposure to nanoparticles (NP), no human toxicological data is currently available. To address this issue, we took welders, who present various adverse respiratory outcomes, as a model population of occupational exposure to NP. The aim of this study was to evaluate if welding fume-issued NP could be responsible, at least partially, in the lung alterations observed in welders. METHODS: A combination of imaging and material science techniques including ((scanning) transmission electron microscopy ((S)TEM), energy dispersive X-ray (EDX), and X-ray microfluorescence (μXRF)), was used to characterize NP content in lung tissue from 21 welders and 21 matched control patients. Representative NP were synthesized, and their effects on macrophage inflammatory secretome and migration were evaluated, together with the effect of this macrophage inflammatory secretome on human lung primary fibroblasts differentiation. RESULTS: Welding-related NP (Fe, Mn, Cr oxides essentially) were identified in lung tissue sections from welders, in macrophages present in the alveolar lumen and in fibrous regions. In vitro macrophage exposure to representative NP (Fe(2)O(3), Fe(3)O(4), MnFe(2)O(4) and CrOOH) induced the production of a pro-inflammatory secretome (increased production of CXCL-8, IL-1ß, TNF-α, CCL-2, −3, −4, and to a lesser extent IL-6, CCL-7 and −22), and all but Fe(3)O(4) NP induce an increased migration of macrophages (Boyden chamber). There was no effect of NP-exposed macrophage secretome on human primary lung fibroblasts differentiation. CONCLUSIONS: Altogether, the data reported here strongly suggest that welding-related NP could be responsible, at least in part, for the pulmonary inflammation observed in welders. These results provide therefore the first evidence of a link between human exposure to NP and long-term pulmonary effects. |
format | Online Article Text |
id | pubmed-4037282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40372822014-05-29 Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders Andujar, Pascal Simon-Deckers, Angélique Galateau-Sallé, Françoise Fayard, Barbara Beaune, Gregory Clin, Bénédicte Billon-Galland, Marie-Annick Durupthy, Olivier Pairon, Jean-Claude Doucet, Jean Boczkowski, Jorge Lanone, Sophie Part Fibre Toxicol Research BACKGROUND: Although major concerns exist regarding the potential consequences of human exposure to nanoparticles (NP), no human toxicological data is currently available. To address this issue, we took welders, who present various adverse respiratory outcomes, as a model population of occupational exposure to NP. The aim of this study was to evaluate if welding fume-issued NP could be responsible, at least partially, in the lung alterations observed in welders. METHODS: A combination of imaging and material science techniques including ((scanning) transmission electron microscopy ((S)TEM), energy dispersive X-ray (EDX), and X-ray microfluorescence (μXRF)), was used to characterize NP content in lung tissue from 21 welders and 21 matched control patients. Representative NP were synthesized, and their effects on macrophage inflammatory secretome and migration were evaluated, together with the effect of this macrophage inflammatory secretome on human lung primary fibroblasts differentiation. RESULTS: Welding-related NP (Fe, Mn, Cr oxides essentially) were identified in lung tissue sections from welders, in macrophages present in the alveolar lumen and in fibrous regions. In vitro macrophage exposure to representative NP (Fe(2)O(3), Fe(3)O(4), MnFe(2)O(4) and CrOOH) induced the production of a pro-inflammatory secretome (increased production of CXCL-8, IL-1ß, TNF-α, CCL-2, −3, −4, and to a lesser extent IL-6, CCL-7 and −22), and all but Fe(3)O(4) NP induce an increased migration of macrophages (Boyden chamber). There was no effect of NP-exposed macrophage secretome on human primary lung fibroblasts differentiation. CONCLUSIONS: Altogether, the data reported here strongly suggest that welding-related NP could be responsible, at least in part, for the pulmonary inflammation observed in welders. These results provide therefore the first evidence of a link between human exposure to NP and long-term pulmonary effects. BioMed Central 2014-05-13 /pmc/articles/PMC4037282/ /pubmed/24885771 http://dx.doi.org/10.1186/1743-8977-11-23 Text en Copyright © 2014 Andujar et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Andujar, Pascal Simon-Deckers, Angélique Galateau-Sallé, Françoise Fayard, Barbara Beaune, Gregory Clin, Bénédicte Billon-Galland, Marie-Annick Durupthy, Olivier Pairon, Jean-Claude Doucet, Jean Boczkowski, Jorge Lanone, Sophie Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders |
title | Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders |
title_full | Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders |
title_fullStr | Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders |
title_full_unstemmed | Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders |
title_short | Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders |
title_sort | role of metal oxide nanoparticles in histopathological changes observed in the lung of welders |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037282/ https://www.ncbi.nlm.nih.gov/pubmed/24885771 http://dx.doi.org/10.1186/1743-8977-11-23 |
work_keys_str_mv | AT andujarpascal roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT simondeckersangelique roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT galateausallefrancoise roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT fayardbarbara roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT beaunegregory roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT clinbenedicte roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT billongallandmarieannick roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT durupthyolivier roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT paironjeanclaude roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT doucetjean roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT boczkowskijorge roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders AT lanonesophie roleofmetaloxidenanoparticlesinhistopathologicalchangesobservedinthelungofwelders |